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Abstract

This paper studies the identification, estimation, and inference of long-term

(binary) treatment effect parameters when balanced panel data is not avail-

able, or consists of only a subset of the available data. We develop a new

estimator: the chained difference-in-differences, which leverages the overlap-

ping structure of many unbalanced panel data sets. This approach consists in

aggregating a collection of short-term treatment effects estimated on multiple

incomplete panels. Our estimator accommodates (1) multiple time periods, (2)

variation in treatment timing, (3) treatment effect heterogeneity, (4) general

missing data patterns, and (5) sample selection on observables. We establish

the asymptotic properties of the proposed estimator and discuss identification

and efficiency gains in comparison to existing methods. Finally, we illustrate

its relevance through (i) numerical simulations, and (ii) an application about

the effects of an innovation policy in France.
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1 Introduction

Many public policies take years before having effects on their targeted outcomes.

For instance, most innovation policies have long run objectives such as making new

discoveries, enhancing knowledge, and increasing technology development, but induce

only little innovation in the short-run (Bakker, 2013; O’Connor and Rice, 2013;

Gross et al., 2018). Measuring these long-term effects is however difficult for two

principal reasons. First, identification of treatment effects from observational data

raises significant challenges, whereas randomized controlled experiments are often too

costly, or raise ethical concerns. Second, treatment effects are frequently estimated

from panel survey data, where the subjects of interest (e.g. individuals or firms) are

not consistently observed over the entire time frame. This problem can be caused

by attrition (Hausman and Wise, 1979), if individuals drop out of the sample, or

because of the survey design itself, if individuals are frequently replaced to prevent

attrition or over-soliciting respondents (Nijman, Verbeek and Van Soest, 1991).

In this paper, we study the identification, estimation, and inference of long-term

treatment effects in settings where balanced panel data is not available, or consists

of only a subset of the available data. We develop a new estimator, the chained

difference-in-differences (DiD), which leverages the overlapping structure of many

unbalanced panel data sets (Baltagi and Song, 2006). The intuition behind the

chained DiD estimator is simple. Letting Yt be an outcome of interest observed in

three distinct time periods t0 < t1 < t2, the long difference Yt2 − Yt0 can always be

decomposed into a sum of short differences (Yt2 − Yt1) + (Yt1 − Yt0). Our estimator

generalizes this simple idea by optimally aggregating short-term treatment effect

parameters, or “chain links”, obtained from (possibly many) overlapping incomplete

panels. For instance, one subsample of individuals might be used to estimate the DiD

from t0 to t1 while another would be used to estimate the DiD from t1 to t2. The sum

of both effects identifies the long-term DiD from t0 to t2, which may not be feasible

or may suffer from efficiency losses if a large part of the sample is discarded by using

only a balanced subsample. Our estimator is designed for multiple time periods, it

accommodates variations in treatment timing, treatment effect heterogeneity, general

missing data patterns, sample selection on observables, and it may deliver substantial
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efficiency gains compared to estimators using only subsets of the data or treating the

unbalanced panel as repeated cross-sectional data.

Building upon the influential work of Callaway and Sant’Anna (2021), we show

that our estimator is consistent, asymptotically normal, and computationally sim-

ple. Their multiplier bootstrap and pre-trend tests remain asymptotically valid in

our setting. We identify three main advantages of our approach: (1) it does not

require having a balanced panel subsample as it is the case with a standard DiD; (2)

identifying assumption allows for sample selection on time-persistent unobservable

(or latent) factors, unlike the cross-section DiD which treats the sample as repeated

cross-sectional data; and (3) it may also deliver efficiency gains compared to existing

methods, notably when the outcome variable is highly time-persistent.

The proposed approach is especially relevant with regard to the significant interest for

long-term evaluations of interventions, with many applications related to education

and labor economics (Angrist, Bettinger and Kremer, 2006; Kahn, 2010; Oreopoulos,

von Wachter and Heisz, 2012; Autor and Houseman, 2010; Garćıa-Pérez, Marinescu

and Vall Castello, 2019; Lechner, Miquel and Wunsch, 2011; Mroz and Savage, 2006;

Stevens, 1997). The estimation of treatment effects generally consists in performing a

DiD focusing only on units that are observed over the entire time frame: the balanced

subsample. This approach, hereafter referred to as the long DiD, allows getting rid of

both time- and individual-specific unobservable heterogeneity, but may also involve

discarding many individuals with missing observations when estimating long-term

effects. The evaluation of long-term effects is sometimes difficult, if not infeasible,

because of such missing data problems. Missing observations in panel data sets may

exist for two principal reasons: (1) by design or (2) because of attrition.

First, the design of rotating panel surveys attempts to alleviate the burden of admin-

istering and responding to statistical surveys, and to prevent attrition, by replacing

subjects regularly (Heshmati, 1998). The survey is administered to a cohort of sub-

jects in a limited number of periods. The cohort is then replaced by another cohort

randomly drawn from the population of interest. The resulting data set is hence

composed of a collection of incomplete panels. The data is said to have an over-

lapping structure if there is at least one period in which two separate cohorts are

administered the survey.
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The most famous example of rotating panel survey is the Current Population Survey

(CPS), where each cohort is interviewed for a total of 8 months (over a period of

16 months), and part of the sample is replaced each month by a new subsample.1

This survey is one of the most widely used data sources in economic and social

research. It has been used or cited in 1000+ articles between 2000 and 2022, including

publications in top journals such as the American Economic Review, Journal of

Political Economy, Quarterly Journal of Economics, American Sociological Review,

and Demography.2 Other rotating panel surveys include, but are not limited to,

the Medical Expenditure Panel Survey, the General Social Survey since 2006, the

Consumer Expenditure Survey (Blundell, Pistaferri and Preston, 2008) in the U.S.,

the Labour Force Survey in the U.K., and the Enquête Emploi (Labour Force Survey)

and Enquête sur les Moyens Consacrés à la R&D (R&D Survey) in France.

Despite their prevalence, the econometrics literature on rotating panels is almost

non-existent (Baltagi and Song, 2006). Heshmati (1998) uses rotating panels for

production function estimation. Nijman, Verbeek and Van Soest (1991) study the

optimal choice of the rotation period for estimating a linear combination of period

means. Likewise, our estimator consists in a linear combination of parameters cor-

responding to the long-term average treatment effect parameter. To the best of our

knowledge, our paper is the first to study identification, estimation, and inference of

treatment effects in this context.

Second, individuals may also drop out of the surveys and cause attrition, which can

be particularly severe for long panels. This attrition raises some concerns because

it is associated with selection. Attrition can be due to either “ignorable” or “non-

ignorable” selection rules (Verbeek and Nijman, 1996). Ignorable attrition implies

that missing data occurs completely at random, and as such focusing on a balanced

panel subsample does not threaten identification. Verbeek and Nijman (1992), among

others, propose a test of the ignorability assumption. Non-ignorable attrition means

that missing data is related to either observable or unobservable factors. Hirano et al.

(2001) provide important identification results for the additive non-ignorable class of

attrition models, which nest several well-known methods (Hausman and Wise, 1979;

1The design is detailed at https://www.bls.gov/opub/hom/cps/design.htm.
2This figure is based on a Google Scholar search conducted on December 5, 2022.
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Little and Rubin, 1989). These results have been extended to multi-periods panels

by Hoonhout and Ridder (2019) and apply to our setting, in particular we consider

their Sequential Missing At Random assumption. Bhattacharya (2008) studies the

properties of a sieves-based semi-parametric estimator of the attrition function ini-

tially proposed by Hirano et al. (2001). These methods are often referred to as

models of selection on unobservables because the probability of attrition is allowed

to depend on variables that are not observed when an individual drops out, but

not on unobservable error terms (Moffit, Fitzgerald and Gottschalk, 1999). Inverse

propensity weighting is the most popular method for addressing non-ignorable attri-

tion caused by observable factors, even beyond the estimation of average treatment

effects (Chaudhuri, Frazier and Renault, 2018). There also exist methods using in-

strumental variables to address attrition due to latent factors (Frölich and Huber,

2014). Other approaches focus on particular structures of attrition, like monotoni-

cally missing data (Chaudhuri, 2020; Barnwell and Chaudhuri, 2021).

Attrition is generally addressed before estimating treatment effects with the long

DiD, either by reweighting the observations in the balanced subsample with inverse

propensity scores (Hirano, Imbens and Ridder, 2003), or by imputing the missing

observations (Hirano et al., 1998). However, discarding a possibly large proportion

of the data by focusing on the balanced subsample may lead to significant efficiency

losses (Baltagi and Song, 2006; Chaudhuri, 2020; Barnwell and Chaudhuri, 2021), or

may lead to discarding the complete dataset, as illustrated in our application using

the French R&D survey. If there are too few individuals observed over the entire time

horizon, the data is typically treated as repeated cross-sections and treatment effects

are estimated with the cross-section DiD (Abadie, 2005; Callaway and Sant’Anna,

2021).3

The identification of the average treatment effect using the cross-section DiD requires

not only a parallel trends assumption on the population, but also that the sampling

process be (conditionally) independent of the levels of the outcome variable. This

assumption is violated if, for instance, treated units with larger unobserved individ-

ual shocks are relatively more likely to be sampled in later periods. In such a case,

3This approach consists in taking the difference of differences of averages, where different sets
of units are used to compute each of the four averages.

5



the treatment groups observed early on will differ in unobservable ways from those

observed later on. An identification problem arises as soon as the sampling process

does not affect the observed control groups in the exact same way. Instead, our

approach requires that the sampling process be (conditionally) independent of the

trend of the outcomes, because the chained DiD allows eliminating individual het-

erogeneity like the long DiD before taking expectations. Therefore, the chained DiD

is robust to some forms of attrition caused by unobservable heterogeneity, unlike the

cross-section DiD. Remark that these two identifying assumptions are non-nested in

general. Note further that the attrition models discussed earlier can also be used as

a first-step in our framework. Although we do not correct for the efficiency losses of

using such first-step plug-in estimates in our paper, we identify some suitable options

to do so (Frazier and Renault, 2017).

The chained DiD rests on a parallel trends assumption, conditioned on being sampled.

The parallel trends assumption posits that in the absence of treatment, the trends in

potential outcomes for the treated and non-treated groups in the population would

have been similar. It offers a weaker alternative to the assumption that the potential

outcomes for both treated and untreated groups in the population would have been

identical. Extending this logic to unbalanced panel data, our additional assumption

pertains to the composition of the sample. If the population is composed of different

unobservable types that correlate with treatment assignment and the likelihood of

being sampled, then a selection bias may exist. To address this problem, we assume

that all unobservable types exhibit similar trends in outcomes conditional on their

treatment status (and possibly other covariates) so that the parallel trend assumption

also holds in the sample.

Recent developments in the literature about treatments effects with multiple peri-

ods and treatment heterogeneity have revealed that two-way fixed-effects estima-

tors fail to identify the treatment effect parameters of interest in many contexts

(de Chaisemartin and D’Haultfœuille, 2020; Goodman-Bacon, 2021; Borusyak, Jar-

avel and Spiess, 2021; Sun and Abraham, 2021).4 Our paper builds upon Callaway

and Sant’Anna (2021) which address this issue by generalizing the approach de-

4de Chaisemartin and D’Haultfœuille (2022b) provide an excellent survey of the literature, which
we briefly summarize in Section 2.
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veloped in Abadie (2005) to multiple periods and varying treatment timing. We

contribute further to this literature by extending this framework to settings with in-

complete panel data. An alternative approach would have been to adapt the general

framework developed by de Chaisemartin and D’Haultfœuille (2020) to our setting,

or the other related papers focused on staggered adoption designs and event studies

with multiple periods. However, the chained DiD fits very well within the frame-

work developed by Callaway and Sant’Anna (2021) which focuses on estimating all

group-time average treatment effects before aggregating all those parameters into

summary parameters of interest. Likewise, our approach focus on (even smaller)

building blocks: one-period-difference group-time average treatment effects, which

measure the increase of average treatment effect of group g from period t − 1 to

period t. In the general case, these blocks correspond to k-period-difference group-

time average treatment effects. We also discuss regression alternatives inspired by

Borusyak, Jaravel and Spiess (2021) and Wooldridge (2021) in the paper.

We illustrate the performance of the chained DiD in two ways. First, we use simula-

tions to compare the long DiD, chained DiD and cross-section DiD in terms of bias

and variance under several data generating processes (DGP). Our simulations in-

clude a stratified panel data set, composed of a balanced panel and a rotating panel.

Second, we study the long-term employment effects of a large-scale innovation policy

in France giving grants to collaborative R&D projects. Technical progress and in-

novation, stimulated by R&D activities, are key to economic growth (Scherer, 1982;

Howitt and Aghion, 1998; Griffith, Redding and Reenen, 2004) but firms tend to in-

vest too little because of the public good nature of innovations (Arrow, 1962; Nelson,

1959). Therefore, measuring the long term effects of subsidized R&D is important

to inform policymakers and improve future policies.

This application is especially relevant because the French R&D survey, which con-

tains firm-level data on R&D activities, consists of rotating panels but does not in-

clude a balanced subsample except for the largest firms. In addition, it is possible to

fully observe a limited number of variables for all firms close to those provided by the

R&D survey by using administrative data. We are thus able to compare the results of

each of the three estimators by focusing on two of those variables: total employment

and highly qualified workforce. The long DiD is applied to the complete data and
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serves as the benchmark estimates. The chained DiD and cross-section DiD estima-

tors are applied to both data sets, and to an “artificial” unbalanced panel which is

generated by discarding all observations from the complete administrative data set

which are missing in the R&D survey. This application is somehow comparable to a

simulation exercise but uses real data.

Our results show that the policy had a positive effect on employment for firms that

received a grant to participate to a collaborative R&D project. We find that the

estimates as well as their standard errors obtained with the chained DiD estimator

are close to those obtained with the long DiD. In contrast, the cross-section estimator

delivers biased estimates which also lack sufficient precision to detect any statistically

significant effect associated with the policy.

The remainder of the paper is organized as follows. Section 2 presents our method-

ology and asymptotic results. Numerical simulations are in Section 3. Section 4

contains the application to R&D policy. Section 5 concludes the paper.

2 Identification, Estimation and Inference

2.1 Basic Framework

We first present the main insights in a simple framework. The main notation is

as follows. There are T periods and each particular time period is denoted by

t = 1, ..., T . In a standard DiD setup, T = 2, no one is treated in t = 1, and all

treatments take place in t = 2 = T . To gain intuition, we first focus on the case

where all treatments take place in t = 2 but assume T > 2.

Define G to be a binary variable equal to one if an individual is in the treatment

group, and C = 1−G as a binary variable equal to one for individuals in the control

group. Also, define Dt to be a binary variable equal to one if an individual is treated

in t, and equal to zero otherwise. Let Yt(0) denote the potential outcome at time

t without the treatment and Yt(1) denote its counterpart with the treatment. The

realized outcome in each period can be written as Yt = DtYt(1) + (1−Dt)Yt(0).

We focus on the long-term average treatment effect on the treated which corresponds
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to the average treatment effect in period t > 2 on individuals in the treatment group,

hence first treated in period 2. It is formally defined by

ATT (t) = E [Yt(1)− Yt(0)|G = 1] . (1)

The identification of ATT (t) with panel data has attracted much research attention.

In this paper, we are mainly interested in a case where balanced panel data is not

available.

The missing data pattern. We assume that a new random sample of nt individ-

uals is drawn at each period t to replace a subsample of previously observed individ-

uals. This replacement can occur due to attrition or by design. For the moment, we

assume that subsamples may differ in size nt but individuals are only observed for

two consecutive periods as in many rotating panel design.5 Therefore, one cannot

observe the entire path {Y1, Y2, ..., YT } for any individual. The key feature of our

approach is that there is some overlap across subsamples, that is there are at least

two different subsamples observed in each period 1 < t < T .

This structure is in stark contrast with the literature about attrition in panel data,

which typically assumes that there always exists a balanced subsample where indi-

viduals are observed throughout the entire time frame (Hirano et al., 2001; Hoonhout

and Ridder, 2019). Although there is no need for such a balanced subsample here,

we extend our method to more general settings in Section 2.2.2. This extension is

illustrated in Sections 3 and 4.

To characterize the sampling process, we define St to be a binary variable equal to

one for individuals observed at t and zero otherwise, and use St,t+1 to denote StSt+1

which indicates if an individual is observed at both t and t + 1. The missing data

pattern is summarized in Table 1 for T = 3. In the general framework, we will assume

that treatments can also vary with some observable covariates X, that individuals

can be observed in non-consecutive periods, and that sampling probabilities may also

5In practice, rotating panels may involve subgroups sampled over a different number of con-
secutive periods. The result of this paper continues to apply, so the same estimator and inference
procedure can be used even with a more sophisticated sampling process as presented in Section
2.2.2.
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be functions of (possibly different) observable covariates or past outcomes.6

Table 1: Missing data pattern in a three-period panel data set

Obs. Indicators Variables
Sub-population S1 S2 S3 Y1 Y2 Y3 X G
Incomplete Panel 1 1 1 0 × × · × ×
Incomplete Panel 2 0 1 1 · × × × ×

The long DiD. The common approach to identify treatment effects is to consider

the long difference-in-differences defined by

ATT (t) =E[Yt(1)− Y1(0)|G = 1]− E[Yt(0)− Y1(0)|C = 1], (2)

under the standard parallel trend assumption E[Yt(0) − Y1(0)|G = 1] = E[Yt(0) −
Y1(0)|C = 1]. ATT (t) corresponds to the long-term effect for t > 2. Unfortunately,

individuals are never observed more than two consecutive periods in this framework.

Calculating the averages of Yit − Yi1 for t > 2 for the treatment and control groups

is hence infeasible.

The cross-section DiD. If the panel consists of incomplete panel data, the iden-

tification of the parameter of interest can be achieved by assuming that the sampling

process St is independent of (Yt, D1, D2, ..., DT ) in addition to the parallel trend as-

sumption (Abadie, 2005). In this case, ATT (t) is identified by the “cross-section

DiD” given by

ATTCS = (E[Yt(1)|StG = 1]− E[Y1(0)|S1G = 1])− (E[Yt(0)|StC = 1]− E[Y1(0)|S1C = 1]) .

The sampling assumption allows replacing the averages of differences, E[Yt(0) −
Y1(0)|a = 1] for a ∈ {G,C}, by the difference of averages, e.g. E[Yt(0)|Sta = 1] −
E[Y1(0)|S1a = 1] for a ∈ {G,C}. This approach does not eliminate the individual-

6In this paper, we do not consider cases where treatment status (or covariates) may also be
missing, but relevant solutions already exist for difference-in-differences methods (Botosaru and
Gutierrez, 2018).
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specific unobservable heterogeneity.7

The chained DiD. Our approach takes advantage of the overlapping panel struc-

ture. Remark that each term in (2) can be decomposed into

E [Yt(1)− Y1(0)|a = 1] =
t−1∑
τ=1

E [Yτ+1(Dτ+1)− Yτ (Dτ )|a = 1] (3)

for a ∈ {G,C}. Thus, identification of ATT (t) is obtained by summing the short-

term DiD as in

ATTCD(t) =
t−1∑
τ=1

(E [Yτ+1(Dτ+1)− Yτ (Dτ )|G = 1]− E [Yτ+1(Dτ+1)− Yτ (Dτ )|C = 1])

=
t−1∑
τ=1

(E [Yτ+1(Dτ+1)− Yτ (Dτ )|Sτ,τ+1G = 1]− E [Yτ+1(Dτ+1)− Yτ (Dτ )|Sτ,τ+1C = 1]) ,

where the second equality holds under the assumption that the sampling process

St,t+1 is independent of (Yt+1 − Yt, D1, D2, ..., DT ). This approach not only allows

eliminating the individual-specific heterogeneity, it also makes use of a different iden-

tifying assumption than the one for the cross-section DiD in this setting. Remark that

these assumptions are generally non-nested. However, replacement of individuals in

panel survey data is often based on some variables observed before the replacement

period but not on their evolution per se, as illustrated in our application.8 Our

application provides an illustration of that argument.

Simple model. In order to gain intuition about the identification, estimation and

inference of ATT (t) in this context, we suppose that the potential outcome is gen-

erated by a components of variance process

Yit(Di) = αi + δt +
t∑

τ=2

βτDiτ + εit, (4)

7This approach is readily implemented in the R/Stata package did/csdid and corresponds to
the repeated cross sections version of Callaway and Sant’Anna (2021).

8Surveys are usually not specifically designed to use panel econometric methods.
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where Di = (Di1, Di2, ..., DiT ) denotes the vector of treatment status, ATT (t) =∑t
τ=2 βτ is the impact of the treatment evaluated at t. αi is an individual-specific

time-persistent unobservable component of variance σ2
α, δt is a time-specific unobserv-

able component, and εit is a mean-zero individual-transitory shock that is an auto-

regressive error process of order 1 represented by εit+1 = ρεit+ηit+1 with ρ ∈ [0, 1] and

ηit+1 being a white noise of variance σ2
η. Assume further that Dit ⊥⊥ (Yit(0), Yit(1)),

for all t > 2. These assumptions imply V (εit) = σ2
ε = σ2

η/(1− ρ2) if 0 ≤ ρ < 1, and

V (εit) = σ2
ε1
+ (t− 1)σ2

η if ρ = 1.

2.1.1 Identification

If the sampling process is independent of all the components of Yit(Di), then both

ATTCD and ATTCS identify the parameter of interest. However, if the unobservable

individual-specific component αi is correlated with the sampling process, ATTCS

admits the bias term

(E[αi|StG = 1]− E[αi|S1G = 1])− (E[αi|StC = 1]− E[αi|S1C = 1]) . (5)

Furthermore, if the individual transitory shock εit is correlated with the sampling

process, ATTCS may also admit the bias term

(E[εit|StG = 1]− E[εi1|S1G = 1])− (E[εit|StC = 1]− E[εi1|S1C = 1]) . (6)

These bias terms are non-zero if the compositions of the sampled treatment and con-

trol groups evolve differently through time, due to either the time-persistent hetero-

geneity αi or the time-varying error εit. The former situation happens, for instance,

if individuals with larger αi are more likely to be sampled in the control group in

period 1 but become relatively more likely to be sampled in the treatment group in

period t. The latter case occurs, for instance, if ρ > 0 and untreated individuals with

larger εiτ−1 are more likely to be sampled in period τ . If εiτ−1 is highly persistent, the

control group observed in later periods will be increasingly composed of individuals

with larger past idiosyncratic shocks. Addressing these biases can be difficult, if not

impossible, due to the unobservability of these errors.
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In contrast, ATTCD cancels out all αi’s, hence it is immune to biases caused by the

time-persistent individual heterogeneity like (5). However, the time-varying errors

may not fully cancel out and a bias term related to (6) could exist, as shown by

t∑
τ=2

(E[(ρ− 1)εiτ−1 + ηiτ |Sττ−1G = 1])− (E[(ρ− 1)εit−1 + ηit|Sττ−1C = 1]) , (7)

if ρ < 1, and for instance, individuals with larger εiτ−1 are more likely to be sampled

in period τ . This bias disappears if εit follows a random walk (ρ = 1).

Therefore, if the sampling process depends on unobservable components of the out-

comes Yit but is not correlated with the first-differences in outcomes Yit+1 − Yit

conditional on treatment status, then ATT (t) is still identified by ATTCD(t) but not

necessarily by ATTCS(t). This result implies that identification with ATTCD(t) is

more robust to some potential dependence between the sampling process and unob-

servable time-persistent and time-varying factors. Ghanem, Sant’Anna and Wthrich

(2023) show that relying on parallel trends assumptions in difference-in-differences

studies, with balanced panel data, imply restrictions on selection into treatment and

the time-series properties of the outcomes similar to ours.9

The R&D survey example. To illustrate the practical significance of this discus-

sion about identification, let us consider the example of R&D subsidy programs and

their impact on firms’ labor forces, as explored in our application section. Consider

that the firm population is divided into two distinct, unobservable (time-persistent)

types: high-quality and low-quality research teams. The parallel trends assump-

tion would require that, in the absence of subsidies, firms with high-quality and

low-quality research teams would have followed similar trends in outcomes.

The risk of selection bias emerges if the allocation of subsidies is not random and cor-

relates with unobservable team quality. The long DiD inherently neutralizes this bias

if the selection into treatment is solely linked to individual fixed-effects (Ghanem,

Sant’Anna and Wthrich, 2023). Nonetheless, this selection bias warrants further

9Specifically, they identify two key scenarios: (1) selection into treatment based on fixed ef-
fects, leading to a stationarity restriction; and (2) selection on time-varying pre-treatment factors,
implying a martingale property.
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scrutiny if the propensity of high and low-quality teams to consistently participate

in R&D surveys varies, possibly due to differences in resource availability, past expe-

rience with surveys, corporate culture, or differing levels of motivation across types.

In this context, the cross-section DiD method becomes susceptible to selection bias.

However, the chained DiD approach, which compares the changes in outcomes over

multiple time periods, remains unaffected by this bias, as long as the variation in

survey response rates does not correlate with how outcomes evolve conditional on

treatment assignment.

2.1.2 Estimation

A direct estimation method for both ATTCD(t) and ATTCS(t) is to substitute expec-

tations by their sample counterparts in each expression. These Horvitz-Thompson

estimators can be written as the weighted averages

ÂTTCD(t) =
1

n

n∑
i=1

t−1∑
τ=1

{
ŵG

iττ+1 (yiτ+1 − yiτ )− ŵC
iττ+1 (yiτ+1 − yiτ )

}
, (8)

ÂTTCS(t) =
1

n

n∑
i=1

{(
ŵG

ityit − ŵG
i1yi1

)
−
(
ŵC

ityit − ŵC
i1yi1

)}
, (9)

where yit denote the outcome variable for individual i in period t, and the weights

are defined as

ŵa
iτ =

Siτai
1
n

∑n
i=1 Siτai

, and ŵa
iττ+1 =

Siτ,τ+1ai
1
n

∑n
i=1 Siτ,τ+1ai

,

with ai ∈ {G,C}, and for all τ = 1, ...T − 1. A formal treatment is presented in the

general framework. Remark that these two estimators can be written as elementwise

products and divisions of matrices.10

In this simple context, estimators of ATTCD(t) and ATTCS(t) can also be obtained

10For example, the chained DiD can be written in matrix form using the Hadamard product ⊙
and division ⊘ as ÂTTCD(t) = 1′

n [∆Y ⊙ (W1 ⊘ 1n1′
nW1 −W0 ⊘ 1n1′

nW0)]1t−1, where 1l denotes
a l-dimensional vector of 1, ∆Y is a n×(t−1) matrix where each row is the difference (yi2, ..., yit)−
(yi1, ..., yit−1), W1 a n× (t− 1) matrix with i, τ element Siττ+1Gi, and similarly for W0.
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by linear regression using a least-squares dummy variables (LSDV) approach as fol-

lows.11 The ATTCD(t)’s are obtained by estimating the two-way fixed-effect (TWFE)

event-study regression model

Yit =
n∑

i′=1

αi′1{i=i′} +
T∑

t′=1

δt′1{t=t′} +
T −1∑
l=1

γl+11{t=gi−1+l} + εit, (10)

by defining 1{.} as a dummy variable for event {.}, and gi as the first period where

individual i received the treatment. In this setting, gi = 2 for all i in the treatment

group and gi > T for all i in the control group. This regression makes it explicit

that each γl+1 corresponds to the effect l-periods after the treatment.

If the treatment is randomly assigned, and in the absence of variations in treatment

timing, Theorem 3 of de Chaisemartin and D’Haultfœuille (2023a) confirms that the

parallel trend assumption yields E [γ̂t] = ATT (t), with

γ̂t =
1∑
i Gi

∑
i:Gi=1

(Yi,t − Yi,1)−
1∑
i Ci

∑
i:Ci=1

(Yi,t − Yi1) , (11)

corresponding to the long DiD estimator, if feasible. In contrast, if the sample

is limited to two consecutive observations for each individual then one can show

that γ̂t corresponds exactly to the chained DiD estimator in (8).12 Similarly, the

cross-section DiD estimator in (9) can be obtained by substituting the fixed-effects∑n
i′=1 αi′1{i=i′} by a constant term α in (10).

However, these TWFE event-study regressions are not heterogeneity-robust (de Chaise-

martin and D’Haultfœuille, 2023a). We identify two key limitations: (1) controlling

for covariates,13 and (2) settings with staggered adoption designs and heterogenous

treatment effects.14 We will address these issues in the general case for the Horvitz-

11We thank a referee for this valuable insight.
12Remark, nevertheless, that there is no need to sum the γ̂t’s because they already correspond

to the ATT (t).
13Theorem S4 of de Chaisemartin and D’Haultfœuille (2020) shows that adding a term X ′θ may

not deliver unbiased ATT estimates under a conditional parallel trend assumption with a linear
functional form for the covariates X.

14Theorem 4 of de Chaisemartin and D’Haultfœuille (2023a) shows that the TWFE event-study
may be biased if the treatment effect is heterogenous across groups or over time, essentially be-
cause it includes comparisons of groups going from untreated to treated to groups treated at both
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Thompson estimator (8), and discuss hetereogeneity-robust regression alternatives

(Borusyak, Jaravel and Spiess, 2021; Wooldridge, 2021).

2.1.3 Inference

In this simple design, the long DiD estimator ÂTTLD(t) is an efficient estimator of

ATT (t) when feasible. We compare the efficiency of the two estimators ÂTTCD(t)

and ÂTTCS(t) under standard assumptions in Proposition 1.15

Proposition 1 Assuming potential outcomes to be specified as in (4), in addition

to the standard assumptions of DiD settings as presented in the proof, and a Miss-

ing Completely At Random assumption, then ÂTTCD(t) is efficient for ρ = 1. In

addition, it is more efficient than ÂTTCS(t) if

2(t− 1)

1 + ρ
σ2
η ≤

1.5σ2
η

1− ρ2
+ σ2

α, for ρ ∈ [0, 1).

On the one hand, the chained DiD introduces additional noise by adding up individual-

transitory shocks εit. On the other hand, the cross-section DiD’s precision depends

on the variance of unobserved individual heterogeneity αi and serial correlation of

individual shocks εit. It also makes use of twice as many observations to calculate

each empirical expectation since two cohorts are observed at each 1 < t < T , i.e.

t− 1, t and t, t+ 1. In comparison, the long DiD would not suffer from any of those

two efficiency losses.

According to Proposition 1, ÂTTCD(t) is efficient under random-walk idiosyncratic

errors. Harmon (2022) shows this efficiency result of the chained DiD estimator in

the case with variations in treatment timing and heterogeneity, under the random

walk assumption. In addition, he shows that the methods proposed by Borusyak,

Jaravel and Spiess (2021) and Wooldridge (2021), although efficient under spherical

errors, are not efficient under the random walk assumption if there are multiple

periods–the so-called “forbidden comparison” (Borusyak, Jaravel and Spiess, 2021)–,and can be con-
taminated by the treatment effects at other periods (de Chaisemartin and D’Haultfœuille, 2023b).

15In this paper, ’efficient estimator’ refers to one with the lowest variance among all unbiased
estimators.
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pre-treatment periods.

Intuitively, ÂTTCD(t) delivers a more precise estimate only if the sum of the extra

individual-transitory shocks has a smaller variance than that of the individual-specific

heterogeneity and individual transitory shock. This condition is plausible as long as

t is not too large, that is not too many incremental effects are aggregated together,

or if σ2
α is relatively large. As t increases, a new term is added to the sum and results

in a marginal increase of the variance proportional to 2
1+ρ

σ2
η. For example, for ρ = 0,

the condition in Proposition 1 becomes σ2
η/2 ≤ σ2

α for t = 2, and 5σ2
η/2 ≤ σ2

α for

t = 6.

Therefore, ÂTTCD(t) should largely dominate in terms of precision in settings with

autocorrelated idiosyncratic shocks, and where the variance of unobserved individual

heterogeneity is large.

2.2 General framework

In the general framework, we allow for: 1) heterogeneity in treatment effects; 2)

variation in treatment timing; 3) sample selection on exogenous observables and

past outcomes; and 4) general missing data patterns.

We first introduce additional notations. Let us substitute the treatment group

dummy G by Gg, a binary variable that is equal to one if an individual is first

treated in period g. There are hence several cohorts of treatment groups. The con-

trol group binary variable C denotes individuals who are never treated. Notice that

for each individual
∑T

g=2Gg + C = 1. Also, define Dt to be a binary variable equal

to one if an individual is treated in t, and equal to zero otherwise. This variable will

be useful to denote if the individual was first treated for some g ≤ t. Also, define

the generalized propensity score as pg(X) = P (Gg = 1|X,Gg + C = 1). This score

measures the probability of an individual with covariates X to be treated conditional

on being in the treated cohort g or the control group.

There are many parameters of interest in this setting, such as, for example, the

average treatment effect k periods after the treatment date. All possible parameters

consist of aggregates of the most basic parameter: the average treatment effect in
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period t for a cohort treated in date g, denoted by

ATT (g, t) = E[Yt(1)− Yt(0)|Gg = 1]. (12)

This parameter is referred to as the group-time average treatment effect in Callaway

and Sant’Anna (2021), and we will build upon their results to study the collection

of such parameters. When only unbalanced panel data is available and t > g + 1,

two methods are possible: (1) the cross-section DiD; and (2) the chained DiD.

In what follows, we assume that individuals are sampled only for two consecutive

periods and then drop out forever, so the long DiD is never feasible. We will introduce

more general missing data patterns in the next subsection.

2.2.1 Rotating panel data

In order to identify the ATT (g, t) and accommodate varying treatment timing and

treatment effect heterogeneity on observable covariates X, we impose assumptions

as follows.

Assumption 1 (Sampling) For all t = 1, ..., T −1, {Yit, Yit+1, Xi, Di1, Di2, ..., DiT }nt

i=1

is independent and identically distributed (iid) conditional on Sit,t+1 = 1.

Assumption 2 (Missing Trends At Random) For all t = 1, ..., T − 1,

Sit,t+1 ⊥ Yit+1 − Yit, Xi|Di. (13)

Assumption 3 (Conditional Parallel Trends) For all t = 2, ..., T , g = 2, ..., T ,

such that g ≤ t,

E [Yt+1(0)− Yt(0)|X,Gg = 1] = E [Yt+1(0)− Yt(0)|X,C = 1] a.s.. (14)

Assumption 4 (Irreversibility of Treatment) For all t = 2, ..., T ,

Dt−1 = 1 implies that Dt = 1. (15)
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Assumption 5 (Overlap) For all g = 2, ..., T , P (Gg = 1) > 0 and for some ε > 0,

pg(X) < 1− ε a.s.

Assumption 1 means that we are considering a rotating panel structure. Conditional

on being sampled in two consecutive periods, individuals are assumed to be iid.

However, unlike Assumption 3.3 in Abadie (2005), it does not imply that observations

are representative of the population of interest because we do not assume that the

iid draws are taken from the population distribution. Instead, we focus on the case

where the identification with a cross-section DiD can fail by considering Assumption

2, under which E [Yit|Sit, Xi, Di] = E [Yit|Xi, Di] may not hold.

Assumption 2 constitutes the principal departure from Callaway and Sant’Anna

(2021). It states that the sampling process is independent of the first-differences of

individual outcomes, and the covariates X, conditionally on treatment assignment,

i.e. trends are missing at random. In particular, it implies that E[Yit+1 − Yit|X, a =

1, St,t+1 = 1] for a ∈ {G2, ..., C} and E[Yit+1−Yit|a = 1, St,t+1 = 1] for a ∈ {G2, ..., C}
correspond to their population counterpart. Assumption 2 is used to simplify expo-

sition by ruling out sample selection on observables, apart from treatment status. In

practice, we only require conditional mean-independence between St,t+1 and Yt+1−Yt.

We will present extensions to sample selection on observables shortly.

Assumption 3 is a key identifying assumption in DiD settings with treatment hetero-

geneity. It means that the average outcomes for the treatment and control groups,

conditional of observables, would have followed parallel paths in absence of the treat-

ment. It is extensively discussed in Abadie (2005), Callaway and Sant’Anna (2021).

Ghanem, Sant’Anna and Wthrich (2023) and de Chaisemartin and D’Haultfœuille

(2022a) provide insightful results about the underlying treatment selection mecha-

nisms.

Assumption 4 implies that once an individual is first treated, that individual will

continue to be treated in the following periods. In other words, there is no exit from

the treatment.16 Finally, Assumption 5 ensures that there are positive probabilities

to belong to the control and treatment groups for any possible value of X. Remark

16Departures from this assumption are considered in de Chaisemartin and D’Haultfœuille
(2022c).
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that X and Di are assumed to be observed for all individuals.

Data generating process. Under Assumption 1, the data generating process

consists of random draws from the mixture distribution FM(·) defined as17

T∑
t=1

λt,t+1FYt,Yt+1,G1,...,GT ,C,X|St,t+1(yt, yt+1, g1, ..., gT , C,X|St,t+1 = 1),

where λt,t+1 = P (St,t+1 = 1) is the sampling probability, yt and yt+1 denote the

outcome, respectively, for an individual sampled at t and t + 1. Expectations un-

der the mixture distribution does not correspond to population expectations. This

difference arises because of different sampling probabilities λt,t+1 = P (St,t+1 = 1)

across time periods and because Assumption 2 does not preclude from some forms of

dependence between the sampling process and the unobservable heterogeneity in Yit.

We introduce conditioning of P (St,t+1) on observables in Corollary 1 and 2. How-

ever, this assumption ensures that expectations of first-differences under the mixture

correspond to population expectations once conditioned on the time periods. There-

after, EM [·] denotes expectations with respect to the mixture distribution FM(·), its
empirical counterpart being the sample mean.

An important result of the paper is given in Theorem 1. We define the weights

wG
ττ−1(g) =

GgSτ,τ−1

EM [GgSτ,τ−1]

and

wC
ττ−1(g,X) =

pg(X)CSτ,τ−1

1− pg(X)
/EM [

pg(X)CSτ,τ−1

1− pg(X)
].

Theorem 1 Under Assumptions 1 - 5, and for 2 ≤ g ≤ t ≤ T , the long-term

average treatment effect in period t is nonparametrically identified, and given by

ATTCD(g, t) =
t∑

τ=g

∆ATT (g, τ),

17In the application, we will discuss more complicated situations in which the data is generated
by stratified sampling. The same results apply using a suitably reweighted sample (Wooldridge,
2010; Davezies and D’Haultfœuille, 2009).
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where ∆ATT (g, τ) = EM

[
wG

ττ−1(g) (Yτ − Yτ−1)
]
− EM

[
wC

ττ−1(g,X) (Yτ − Yτ−1)
]
is

the 1-period-difference group-time average treatment effects, which measure the in-

crease of average treatment effect of group g from period t−1 to period t. In addition,

the cross-section DiD does not identify ATT(g,t) under Assumption 2.

Those identification results suggest the two-step estimator

ÂTTCD(g, t) =
1

n

n∑
i=1

t∑
τ=g

{
ŵG

iττ−1(g) (Yiτ − Yiτ−1)− ŵC
iττ−1(g,X) (Yiτ − Yiτ−1)

}
.

where

ŵG
iττ−1(g) =

GigSiτ−1Siτ

1
n

∑n
i=1GigSiτ−1Siτ

and

ŵC
iττ−1(g) =

p̂g(Xi)CiSiτ−1Siτ

1− p̂g(Xi)
/
1

n

n∑
i=1

p̂g(Xi)CiSiτ−1Siτ

1− p̂g(Xi)
,

with p̂g(·) being an estimated parametric propensity score function, such as logit or

probit, obtained in a first step.

Let us denote ÂTT g≤t the vector of ÂTTCD(g, t)’s for g ≤ t. The next theorem

establishes its joint limiting distribution.

Theorem 2 Under Assumptions 1 - 5 and a standard assumption on the parametric

estimates of the propensity scores (Assumption 5 in Callaway and Sant’Anna (2021)

or 4.4 in Abadie (2005)), for all 2 ≤ g ≤ t ≤ T ,

√
n
(
ÂTT g≤t − ATTg≤t

)
d→ N(0,Σ),

as n → ∞ and where the covariance Σ is detailed in the proof.

In the proof of the above theorem, we also show how the multiplier bootstrap proce-

dure proposed by Callaway and Sant’Anna (2021) adapts to this asymptotic result.

The main difference comes from redefining the influence function, but the result

about its asymptotic validity applies without other modification so it is not repeated
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here. We also refer the reader to their paper for a complete discussion of summary

parameters which use the ATT (g, t) as building-blocks. We provide some results

for these summary parameters and an extension to using the not yet treated as the

control group in Online Appendices A.2.3 and A.2.5.

Sample selection on observables. We extend these results to address sample

selection on observables by considering two alternative MAR assumptions. Let us

first relax Assumption 2 so we have sample selection on X and D.

Assumption 6 (Missing Trends At Random 2) For all t = 2, ..., T ,

Sitt+1 ⊥ Yit+1 − Yit|Xi, Di. (16)

Assumption 6 states that trends are now missing at random conditional on X and D.

In particular, it implies that E[Yit+1−Yit|X, a = 1, St,t+1 = 1] for a ∈ {G2, ..., C} cor-

responds to its population counterpart but requires outcome trends to be reweighted

using X. Notice that it is possible to have different subsets of covariates X1, X2 ∈ X

for selection into treatment and sample selection with minor modifications.

Corollary 1 Under the conditions stipulated in Theorem 1, and by replacing As-

sumption 2 with Assumption 6, the theorem continues to hold. This is achieved

through the application of modified weights

w̃G
ττ−1(g,X) =

E[SτSτ−1|Gg]

E[SτSτ−1|X,Gg]
wG

ττ−1(g,X), (17)

w̃C
ττ−1(g,X) =

E[SτSτ−1|C]

E[SτSτ−1|X,C]
wC

ττ−1(g,X). (18)

Corollary 1 extends the two-step estimator derived from Theorem 1 to account for

sample selection based on observables. This can be achieved by reweighting each

difference Yt−Yt−1 with the corresponding factor E[SτSτ−1|a]
E[SτSτ−1|X,a]

for a ∈ {G2, ..., C} be-

fore applying the same chained DiD estimator. By doing so, we control for potential
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biases arising from observable characteristics influencing sample selection in addition

to unobservable factors, such as unobservable individual heterogeneity.18

Finally, we extend our framework by relaxing Assumption 6 to accommodate sample

selection on variables X, D, and past outcomes, aligning with the Sequential Missing

at Random (SMAR) assumption described in Hoonhout and Ridder (2019).19 For

the sake of clarity, we maintain the assumption that an individual is sampled for at

most two consecutive periods.

Assumption 7 (Sequential Missing At Random) For all t = 1, ..., T −∞,

Yt ⊥ St|X,D, St−1 = 0, (19)

Yt+1 ⊥ St+1|Yt, X,D, St = 1. (20)

Assumption 7 states that the first time a unit is sampled is a function of X and D.

However, for subsequent periods, the likelihood of being sampled again also depends

on the past observed outcome.

Corollary 2 Under the conditions stipulated in Theorem 1, and by replacing As-

sumption 2 with Assumption 7, the theorem continues to hold. This is achieved

through the application of modified weights

˜̃wG
ττ−1 =

E[SτSτ−1|Gg]

E[Sτ |X, Yτ−1, Sτ−1 = 1, G]E[Sτ−1|X,G]
wG

ττ−1(g,X), (21)

˜̃wC
ττ−1 =

E[SτSτ−1|C]

E[Sτ |X, Yτ−1, Sτ−1 = 1, C]E[Sτ−1|X,C]
wC

ττ−1(g,X). (22)

Corollary 2 extends the two-step estimator derived from Theorem 1 to account for

sample selection based on observables and past outcomes by using modified weights.

The chained DiD estimator is otherwise unchanged.

18Remark that one can also opt for applying the stabilized weights
P (SτSτ−1|Xi, ai)

−1/n−1
∑n

i=1 P (SτSτ−1|Xi, ai)
−1 ex-ante.

19We thank a referee for suggesting this valuable extension.
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2.2.2 General missing data patterns

This framework naturally extends to general missing data patterns beyond rotating

panel structures. For simplicity of exposition, we remove the dependence of g in our

notations. We now consider not only first-differences ∆1ATT (t) but also k-period

differences ∆kATT (t) from t−k to t for k = 1, ..., t− 1. The key requirement is that

individuals must be observed at least twice to be used.

Table 2 provides an example of different missing data patterns with 4 subsamples and

3 periods, and all treatments take place at t = 1. The first subsample is a balanced

panel (BP). It identifies ∆1ATT (2), ∆1ATT (3), and ∆2ATT (3). The second, third

and fourth subsamples are incomplete panels (IP1, IP2, IP3) which only identifies a

single parameter.20

Table 2: Example of a more general missing data pattern

Obs. Indicators Identified Parameters
Sub-population S1 S2 S3

Balanced Panel 1 1 1 ∆1ATT (2), ∆1ATT (3), ∆2ATT (3)
Incomplete Panel 1 1 1 0 ∆1ATT (2)
Incomplete Panel 2 0 1 1 ∆1ATT (3)
Incomplete Panel 3 1 0 1 ∆2ATT (3)

There are multiple ways to identify the ATT from period 1 to period 3 in this

example. We can identify ATT (3) with (1) BP alone since ATT (3) = ∆2ATT (3) or

(2) ATT (3) = ∆1ATT (2) +∆1ATT (3); or by combining (3) BP and IP3; or (4) BP

and IP1; or (5) IP1 and IP2; and with (6) IP3 alone. The optimal combination of

the ∆kATT (t) parameters into ATT (t) parameters for general missing data patterns

hence involves solving an (overidentified) linear inverse problem. Doing so will make

use of all subsamples and deliver efficiency gains compared to focusing on one possible

solution, e.g. using only the balanced panel.

The inverse problem arises as follows. Consider the estimates of all possible ∆kATT (t),

for all t ≥ 2 and t − 1 ≥ k ≥ 1, stacked altogether into a vector ∆ATT of length

20Note that we do not consider refreshment samples because they do not identify any parameter
on their own. They could still be used to address attrition ex-ante (Hoonhout and Ridder, 2019).

24



L∆. ∆kATT (t) is called the k-period-difference group-time average treatment effects,

which measure the increase of average treatment effect of group g from period t− k

to period t. By definition ∆kATT (t) = ATT (t)− ATT (t− k), hence we can write

∆ATT = WATT, (23)

where ATT is the vector of ATT (t) for t ≥ 2 of length L ≤ L∆ and W is a matrix

where each element takes value in {−1, 0, 1}. Following this reasoning, the example

in Table 2 can be written as

 ∆1ATT (2)
BP,IP1

∆1ATT (3)
BP,IP2

∆2ATT (3)
BP,IP3

 =

 1 0

−1 1

0 1

[ ATT (2)

ATT (3)

]
, (24)

where we pool all subsamples that identify each ∆kATT (t).
21 We propose to solve

this problem using a GMM approach. Denoting Ω the covariance matrix of ∆ATT,

the optimal GMM estimator of ATT corresponds to (W ′Ω−1W )
−1

W ′Ω−1∆ATT

since WATT is non-random.22 This method allows delivering efficiency gains by us-

ing all individual time-series with at least two observations, without much additional

computational complexity.

Identification, estimation, and inference. In order to identify the ATT (g, t)

in this general framework, we must modify Assumptions 1 to 2 as follows.

Assumption 8 (Sampling) For all t = 1, ..., T , {Yit−k, Yit, Xi, Di1, Di2, ..., DiT }
nt,k

i=1

is independent and identically distributed (iid) conditional on Sit−k,t = 1, for k =

1, ..., t− 1.

21Remark that we could also estimate these parameters separately for each subsample before
stacking them into ∆ATT. That would require to estimate propensity scores conditional on sub-
sample membership.

22Remark that if an element of ATT is not identified, the matrix W ′Ω−1W (or W ′W ) will not
be invertible but a (Moore-Penrose) pseudo-inverse can still be used to identify the other elements.
In addition, pseudo-inverses, e.g. Tikhonov’s, will deliver a stable inverse of Ω if ∆ATT is high-
dimensional (Carrasco, Florens and Renault, 2007).
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Assumption 9 (Missing Trends At Random 3) For all t = 1, ..., T and k =

1, ..., t− 1,

Sit−k,t ⊥ Yit − Yit−k, Xi|Di. (25)

Assumption 8 means that we are considering an incomplete panel structure. Con-

ditional on being sampled in the same two periods, individuals are assumed to be

iid. However, it does not imply that individuals are sampled in two periods only,

nor that observations are representative of the population of interest because we

do not assume that the iid draws are taken from the population distribution. In-

stead, Assumption 9 states that the sampling process is statistically independent

of the joint distribution of k-period-differences of individual outcomes, and observ-

ables, conditionally on treatment status in any period. In particular, it implies that

E[Yit − Yit−k|X, a = 1, St−k,t = 1] for a ∈ {G1, G2, ..., C} corresponds to its popu-

lation counterpart. However, this needs not be true for E[Yit|X, a = 1, St = 1] for

a ∈ {G1, G2, ..., C}.

A critical insight here is that under general missing data patterns, the sampling

assumption can lead to testable hypotheses about trends in various data subsets.

Indeed, Assumption 9 implies a certain level of homogeneity across different subpan-

els. This assumption implies, for the above example, that the trends in outcomes

observed in the balanced panel aligns with those in incomplete panel 1, between

periods 1 and 2, for both untreated and treated groups. However, this assumption

can be relaxed to allow for sample selection based on observables, including subpanel

membership, as described in Corollary 1.

Our estimation procedure is as follows:

1. Compute ∆kATT (g, t) = 1/n
∑n

i=1[(ŵ(g)
G
it,t−k − ŵ(g)Cit,t−k)(Yit − Yit−k)], for all

k, g, t, and stack them into a L∆-dimensional vector ∆ATT ;

2. Define the matrix W appropriately;

3. Estimate the asymptotic covariance matrix Ω̂ = n−1ΨΨ′, where Ψ is a L∆ × n

matrix with elements defined in (48).
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4. Estimate the optimal GMM estimator ÂTT = (W ′Ω̂−1W )−1W ′Ω̂−1∆ATT ;23

The next theorem establishes the joint limiting distribution of this estimator.

Theorem 3 Under Assumptions 3 - 5, a standard assumption on the parametric

estimates of the propensity scores (Assumption 5 in Callaway and Sant’Anna (2021)

or 4.4 in Abadie (2005)), and Assumptions 8 and 9, for all 2 ≤ g ≤ t ≤ T ,

√
n
(
ÂTT −ATT

)
d→ N(0,Σ),

as n → ∞ and where the covariance Σ is detailed in the proof.

The theorem shows that this estimator is consistent and asymptotically normal.

The bootstrap procedures for ATT (g, t)’s (Online Appendix A.2.2) and for summary

parameters (Online Appendix A.2.4) apply with minor modifications, as discussed

in the proof. Although our estimator brings efficiency gains by using an optimal

weighting matrix, it could be further improved by addressing the efficiency losses

from first-step plug-in estimates of propensity scores to adjust for sample selection

on observables. This is left for future research.24

Regression alternatives. Wooldridge (2021) provides a TWFE regression alter-

native to Callaway and Sant’Anna (2021) which results in estimators of the ATT ’s

that are numerically identical to the imputation approach of Borusyak, Jaravel and

Spiess (2021). In the absence of covariates X, this TWFE regression involves indi-

vidual, period, and the interaction of cohort with time-since-adoption fixed effects,

as shown by

Yit =
n∑

i′=1

αi′1{i=i′} +
T∑

t′=1

δt′1{t=t′} +
T∑

g=2

T∑
τ=2

βgτGg1{t=τ} + εit. (26)

23Note further that this approach embeds the estimator proposed above in the rotating panel
data setting when using only the ∆ATT1(t) and replacing Ω by the identity matrix.

24We identified two means to address this caveat. Frazier and Renault (2017) propose a com-
putationally simple yet general approach that involves targeting and penalization to enforce the
asymptotic efficiency for two-step extremum estimators such as ours, whereas Chaudhuri, Min and
Barnwell (2019) and Sant’Anna and Zhao (2020) propose doubly-robust estimators which allow
preserving efficiency.

27



This TWFE event-study regression is equivalent to the chained DiD estimator, pro-

vided we use individual fixed-effects (and not cohort fixed-effects), as well as exclude

covariates and focus on cases where only two consecutive periods are observed per

individual.

A notable advantage of the regression approaches (Borusyak, Jaravel and Spiess,

2021; Wooldridge, 2021) is their flexibility in accommodating unbalanced panel data,

unlike the method of Callaway and Sant’Anna (2021). In these frameworks, the

choice between chained DiD and cross-section DiD estimators in these methods

hinges on selecting between individual and cohort fixed-effects, each with its own

set of identifying assumptions about the sampling process, as discussed earlier.

Despite their adaptability, these alternatives are not without limitations. When in-

corporating covariates, the model complexity increases significantly due to the need

for many interaction terms. They also rely on potentially restrictive linearity as-

sumptions in potential outcomes and treatment effects instead of using propensity

scores. Furthermore, aggregating the estimated parameters to derive the target pa-

rameter of interest may not be trivial. It is therefore unclear that these methods are

more computationally efficient than our estimators.

3 Numerical Simulations

We propose a simulation design adapted from the first section. Let us specify the

potential outcome as a components of variance:

Yit(Di) = αi + δt +
t∑

τ=2

βτDiτ + εit, (27)

where Diτ ∈ {0, 1} denotes whether individual i has been treated in τ or earlier. Let

us assume that t ∈ {0, ..., T + 1} and treatments can only occur in t ≥ 2 so that

G ∈ {2, ..., T + 1}. The data generating process is characterized by the following

assumptions:

• The individual-specific unobservable heterogeneity is iid gaussian: αi ∼ N(1, σ2
α),
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where σ2
α = 2 ;

• The time-specific unobservable heterogeneity is iid gaussian: δt ∼ N(1, 1);

• The error term is iid gaussian: εit ∼ N(0, σ2
ε), where σ2

ε = 0.5;

• The probability to receive the treatment at time g, conditional on being treated

at g or in the control group, is defined as

Pr(Gig = 1|Xi, αi, Gig + Ci = 1) =
1

1 + exp (θ0 + θ1Xi + θ2αi × g)
,

where Xi ∼ N(1, 1) is observable for every i, unlike αi, and θ0 = −1, θ1 = 0.4

and θ2 = 0 or θ2 = 0.2. In the latter case, the treatment probability varies

with treatment timing and the unobserved individual heterogeneity;

• The sampling probability in the consecutive periods t, t + 1 conditional on αi

is given by

Pr(Sitt+1 = 1|αi) =
1

1 + exp (λ0 + λ1αi × t)
,

with λ0 = −1, and λ1 = 0 or λ1 = 0.2, so that the sampling process can also

vary with time and the unobserved individual heterogeneity.

We simulate the sampled data in two steps. First, we generate a population sample

for each period t to represent individuals that are either treated at t or in the control

group. Second, we sample from this population using the specified process. We

formalize this procedure as follows:

1. Generate a population of individuals

(a) Draw N = 2×max
t

{ n
Eα[Pr(Sitt+1)]

} individuals per period in order to have

T +2 population samples of N individuals, where each individual is char-

acterized by a vector (αi, δt, Xi, εit);

(b) Separately for each population sample g, draw a uniform random number

ξi ∈ [0, 1] per individual. If ξi ≤ Pr(Git = 1|Xi, αi, Git+Ci = 1), then set

(Gig = 1, Ci = 0), otherwise set (Gig = 0, Ci = 1).
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(c) Compute Yit from (αi, δt, Xi, εit, Gi0, ..., GiT+1, Ci);

2. Sample from this population

(a) Draw a uniform random number ηit ∈ [0, 1] per individual i and period t.

If ηit ≤ Pr(Sitt+1 = 1|αi), then set Sitt+1 = 1 and Siττ+1 = 0 for τ ̸= t;

(b) Draw (without replacement) n individuals per period t from the popula-

tion for which Sitt+1 = 1;

(c) Compute the different estimators.

(d) Repeat steps 1(b)-2(c) 1,000 times and report the mean and standard

deviation of the estimators.

We consider several simulation designs:

• DGP 1: θ2 = 0 and λ1 = 0. This is the baseline case where the probability of

treatment and the sampling process do not depend on individual heterogeneity

so all estimators are unbiased.

• DGP 2: θ2 = 0.2 and λ1 = 0.2. In this case, both the probability of treatment

and the sampling process depend on individual heterogeneity leading to biased

estimates for the cross-section DiD.

• DGP 3: θ2 = 0.2 and λ1 = 0.2. In this case, we simulate a stratified sample

where 90% of the individuals are sampled on a rotating basis as before and

those with αi superior to the 90th percentile are always observed (10%).

• DGP 4: θ2 = 0.2 and λ1 = 0.2. We also simulate a stratified sample where

individuals with αi superior to the 60th percentile are always observed (40%)

and the rest is drawn as a rotating subpanel (60%).

For all simulations, we set T = 6, so there is a total of 8 periods. In each period, the

population size is 4800, and we draw 150 individuals such that Sitt+1 = 1. Finally,

we set βτ to take the values {1.75, 1.50, 1.25, 1.00, 0.75, 0.50} for τ = {1, 2, 3, 4, 5, 6},
that is, the treatment effect is positive and decreasing over time, relative to the
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treatment starting date. For each sample, we estimate the chained DiD (using sim-

ulated Sitt+1 = 1) and the cross-section DiD (using Sit = 1 that are obtained from

Sitt+1 = 1).

For DGPs 1 and 2, we also estimate the long DiD assuming that all sampled indi-

viduals are observed for the entire time frame. The simulation results are given in

Table 3. This long DiD here is infeasible but serves as a benchmark to illustrate the

significant loss of information resulting from having an unbalanced panel. However,

the chained DiD delivers unbiased estimates in both cases unlike the cross-section

DiD. Remark that we assume iid errors although the chained DiD perform best for

random-walk errors.

Table 3: Simulation results for a rotating panel

DGP 1 DGP 2

Chained DiD CS DiD Long DiD Chained DiD CS DiD Long DiD
β1 1.748 1.745 1.75 1.752 1.894 1.75

(0.099) (0.199) (0.017) (0.097) (0.148) (0.016)
β2 1.5 1.498 1.5 1.499 1.774 1.501

(0.164) (0.305) (0.02) (0.157) (0.218) (0.018)
β3 1.248 1.25 1.251 1.254 1.651 1.25

(0.231) (0.355) (0.023) (0.224) (0.257) (0.02)
β4 1 1.006 1 1.002 1.522 1

(0.3) (0.412) (0.027) (0.293) (0.291) (0.023)
β5 0.741 0.765 0.75 0.739 1.369 0.75

(0.406) (0.521) (0.033) (0.395) (0.365) (0.028)
β6 0.499 0.522 0.499 0.5 1.209 0.503

(0.586) (0.711) (0.046) (0.603) (0.515) (0.04)

Notes: This table shows results obtained from the simulations described above. Simulated βτ take the values
{1.75, 1.50, 1.25, 1.00, 0.75, 0.50} for τ = {1, 2, 3, 4, 5, 6}.

For DGPs 3 and 4, the long DiD is estimated only for individuals that belong to the

balanced subpanel. The simulation results are given in Table 4. We show estimates

from the chained DiD GMM estimator using two weighting matrices: (1) Ch DiD uses

the identity matrix, and (2) CD-GMM uses the optimal weighting matrix presented

earlier. It appears that when the balanced subpanel consists of only 10% of the data,

the chained DiD estimators outperform the long DiD. However, the (asymptotically)

optimal weighting matrix does not always deliver more precise estimates than the

identity matrix in small samples, at least for this simulation design. In comparison to
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the identity matrix, It seems that the optimal weights allow mitigating the precision

loss for longer-term effects (e.g. β6) at the cost of losing some precision for smaller-

term effects (e.g. β1).

Table 4: Simulation results for a stratified sample

DGP 3 DGP 4

Ch DiD CD-GMM CS DiD Long DiD Ch DiD CD-GMM CS DiD Long DiD
β1 1.753 1.748 1.714 1.753 1.754 1.755 1.715 1.754

(0.085) (0.151) (0.14) (0.085) (0.052) (0.057) (0.096) (0.052)
β2 1.501 1.488 1.413 0.897 1.502 1.503 1.422 1.504

(0.127) (0.195) (0.208) (0.315) (0.061) (0.06) (0.137) (0.069)
β3 1.256 1.237 1.112 0.868 1.252 1.25 1.135 1.25

(0.177) (0.234) (0.239) (0.311) (0.072) (0.062) (0.148) (0.068)
β4 1.005 0.988 0.8 0.812 1.003 1.002 0.855 1.002

(0.215) (0.285) (0.268) (0.336) (0.077) (0.065) (0.158) (0.071)
β5 0.749 0.749 0.459 0.706 0.75 0.751 0.567 0.751

(0.285) (0.331) (0.339) (0.352) (0.09) (0.074) (0.183) (0.078)
β6 0.508 0.52 0.123 0.511 0.509 0.511 0.316 0.511

(0.412) (0.398) (0.479) (0.393) (0.121) (0.094) (0.237) (0.097)

Notes: This table shows results obtained from the simulations described above. Simulated βτ take the values
{1.75, 1.50, 1.25, 1.00, 0.75, 0.50} for τ = {1, 2, 3, 4, 5, 6}.

4 Application: The Employment Effects of an In-

novation Policy in France

We now turn to an application of these methods for estimating the causal impact of

a French innovation policy supporting collaborative R&D projects over the period

2010-2016.

4.1 Background

This innovation policy is made up of different subsidy schemes aimed at developing

R&D collaborations between firms and, often, public organizations. These schemes

aim at subsidizing collaborative projects oriented towards applied research and ex-
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perimental development.25 To obtain funding, a firm must set up a research project

in partnership with at least one other institution. The project is then submitted to

one specific subsidy scheme, often following calls for proposals, much like research

grant in academic research. The selection of projects, and the associated funding, is

based on a list of criteria including, but not limited to, the innovative nature of the

project, its credibility, maturity, or commercial character.

This innovation policy provides an ideal setting to apply our method because R&D

projects take several years to complete. Evaluating the effectiveness of the policy

hence requires estimating its long-term effects. Unfortunately, one of the main data

sources about firm-level R&D activities comes from a survey with a rotating panel

design with multiple strata. Firms investing a large amount in R&D expenditure, i.e.

large companies, are systematically surveyed, while those spending less, i.e. small

and medium-sized enterprises (SMEs) and intermediate-sized enterprises (ISEs), are

surveyed only two consecutive years and then dropped out of the sample. Further-

more, large firms are always involved in at least one R&D project, so it is not possible

to find a plausible counterfactual for them. Consequently, our policy evaluation focus

on SMEs and ISEs, which form an unbalanced panel.

The mechanism for selecting projects submitted by companies should ideally lead to

the acceptance of good projects and the rejection of weaker ones. It is conceivable

that the accepted projects would have been implemented regardless of subsidies, in-

dicating that what we observe is somehow also reflective of the role played by project

quality rather than simply the impact of subsidies. However, the associated risk with

these projects is high, and it is unclear that they would have been carried out with-

out subsidies, which account for more than 30% of the total project financing on

average. More importantly, the primary goal of our empirical analysis is to assess

whether subsidies for collaborative projects are useful in boosting R&D activities

within SMEs and ISEs. In this context, the outcome variable is not directly mea-

suring the project’s success. Instead, we use the number of researchers and highly

25The schemes are FUI, ISI, PSPC, PIAVE, RAPID and ADEME. Although they share the same
general objective, they support different forms of R&D projects. For example, PSPC projects are
much larger in size than others, FUI projects systematically involve companies and public research
organizations, ADEME projects have environmental objectives, and so on. A detailed description
of the schemes is available in Bellégo et al. (2020).
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qualified workforce, which serves as an indicator of the additional investment in R&D

activities. Empirical evidence also indicates significant variability within companies,

where one project may be accepted while another is rejected. This variability sug-

gests that it would be too simplistic to label a company as uniformly successful or

unsuccessful at attracting subsidies for its projects.26

Furthermore, the gradual implementation of the studied mechanisms means that a

treated company at a given period often serves as a control for other companies

in the period preceding its treatment (the “not yet treated”). This is particularly

true given the prolonged maturation of projects, and it is common for the same

project to be submitted multiple times in various calls for projects before a definitive

acceptance or rejection. Rejected projects may also find better alignment with other

funding opportunities and schemes that better suit their objectives. Consequently,

many projects are declined not necessarily due to their intrinsic quality but rather

because of insufficient maturity or misalignment with the goals of the various subsidy

schemes.

The application presented in this paper focuses on the average treatment effect of

participating for the first time in any of these schemes without distinguishing their

individual effects. It is relevant to analyze this average effect to the extent that all

the schemes contribute to the common objective of subsidizing collaborative R&D

projects. This aggregation leads to more precise estimates because it maximizes the

sample size, but at the same time requires to account for treatment effect hetero-

geneity and variations in treatment timing.27

We estimate the treatment effect of this policy on employment. We focus on em-

ployment because it is the main economic variable for which it is also possible to

consistently observe an almost identical measure for all firms using administrative

data. Therefore, by focusing on such outcome variable, we can compare the results

obtained with the chained DiD estimator to the unfeasible estimates obtained using

the long DiD. The complete results of this policy evaluation, including the effects on

26Note that the treatment is properly defined as receiving a first subsidy for a collaborative
project in our application.

27It is almost impossible to precisely estimate the individual effect of the smallest schemes as
they have subsidized a very small number of projects.
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a larger number of economic variables, are available in Bellégo et al. (2020).

4.2 Data

Our data contains information about all R&D projects financed under these schemes

over the period 2010-2016. The data includes an unique identifier for each partner

participating in a project.28 Using this identifier, we have collected exhaustive firm-

level data from administrative sources that provide the main annual indicators on

the economic activity of companies over the period 2007-2017. In particular, we

collected the following variables: total workforce and the number of engineers in the

workforce from administrative records on firms’ employment as outcomes of interest,

and other variables used in the propensity scores.29

Data on the number of researchers is obtained from the R&D survey.30 This an-

nual survey collects information from about 9000 firms companies each year. The

survey has a stratified sampling design: firms with intramural R&D expenditures

above 750,000 euros are systematically surveyed the following year, while others are

surveyed only two years in a row. The vast majority of the SMEs and ISEs in the

scope of the study are part of the second stratum. In this context, the application of

the standard long DiD method is not possible, which justifies the use of the method

developed in this article.

Having knowledge of the amount of CIR (research tax credit) paid to companies and

their participation in the French cluster policy is essential. Indeed, the amount of

tax credit granted is a good proxy for a company’s propensity to be active in R&D.

28This identifier corresponds to the SIREN number, a unique identification number for French
businesses supervised by the French national institute of statistics.

29Firms’ revenues come from annual tax data restated by INSEE (FICUS/FARE datasets). Em-
ployment information comes from administrative records on firms’ employment (DADS datasets).
Data on cluster policy comes from the French competitiveness cluster (“Pôle de Compétitivité”)
management database. Finally, data on support for innovation comes from the “Crédit Impôt
Recherche” (CIR), a research tax credit, and the “Jeunes Entreprises Innovantes” (JEI) scheme, a
tax and social exemption aimed at young innovative firms. The CIR is the main tool for supporting
innovation in France. Contrary to the devices evaluated in this article, the CIR is an indirect tax
aid, in the sense that it is automatically distributed to companies making eligible R&D expenditures
and that apply for it.

30This survey also provides detailed information on R&D expenditures, the financing of these
expenditures, and some outputs.
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In addition, competitiveness clusters aim to create a network of firms and research

organizations to facilitate the formation of collaborative R&D projects. Participation

in one of these clusters also reveals a firm’s tendency for this form of R&D. These

different variables are therefore suitable candidates to explain the probability of

receiving the treatment in the propensity score.31 It is important to observe some

variables comprehensively across firms so they can be included in the propensity

score, as they must be observed in g − 1, t, and t + 1 to compute the elementary

building block constituting each chain link of the chained DiD.

The number of firms that can potentially carry out an innovative R&D activity is very

small compared to the total number of firms in France (about 3,000,000). Therefore,

in order to avoid comparing firms participating in a collaborative R&D project to

other firms which are unlikely to pursue such activity, we restrict the scope of the

study to firms active in R&D at least one year over the whole period considered. This

activity is measured by merging together all the sources of information available to

us for this purpose: the databases of the research tax credit, the JEI scheme, and

the R&D survey. Doing so leaves us with about 30,000 firms in the sample.

The schemes covered by the study are the main support mechanisms for collaborative

R&D in France and involve the highest amounts of public support. However, there

are other alternatives not discussed here. Altogether, the various schemes considered

have provided funding for 1697 projects over the period, and have involved 8724

partners.32 These projects received a total aid of 3.6 billion euros and involved total

expenditures of 10.4 billion euros from their partners.

Sample selection on observables. The chained difference-in-differences method

relies on the identifying assumption that changes in the potential outcomes are (con-

ditionally) independent of being sampled twice in a row. A key advantage of the

method is that it is robust to sample selection on unobservable time-persistent fac-

tors. However, the design of the R&D survey implies that the probability of observing

31More specifically, the propensity score includes the log of R&D grants, the log of the number
of engineers, the log of investment, the log of the variation in R&D grants, the log of the variation
in turnover, an indicator for being in a competitiveness cluster, and an indicator for being in the
IT sector.

32A firm can participate in several projects.
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the same company twice is positively correlated with observables, in particular past

R&D expenditures. Surveyed companies with larger (or increasing) R&D in t are

more likely to be surveyed again in t + 1. Furthermore, companies likely to engage

in R&D, identified through auxiliary information, are all surveyed and integrated

into the survey data if they conduct R&D. The compilation of various annual sur-

veys therefore results in some sample selection on past R&D expenditures at the

company level.

We address this selection issue using inverse propensity weighting of the first-differences

Yt − Yt−1 following Corollary 1 under a variation of Assumption 6. For tractability,

we specify a logit model for the conditional probability P (Stt+1 = 1|Z), where Z

represents the set of variables determining the survey sampling design, including the

level and changes in R&D expenditures and participation in known R&D support

mechanisms up to date t− 1.33 This approach controls for the effects of selection in

the R&D survey sample and stabilizes the scope of the evaluation.

4.3 Results

In this application, we focus on the effects on (1) total workforce and (2) the em-

ployment of managers and highly qualified workers. Those variables are observed

exhaustively from administrative data (DADS). We estimate the dynamic treatment

effect on these two observed outcomes by using three estimators: the long DiD, the

chained DiD, and the cross-section DiD.

Although these outcomes are consistently observed through time, attrition can still

occur. For example, firms may disappear over time because of economic difficulties

or because they are acquired by another firm. These companies are not taken into

account by the long DiD estimator, unless with an attrition model, whereas they are

accounted for by the chained DiD and cross-section DiD estimators.

We balance the data to both facilitate the comparison across estimators and get

closer to our theoretical framework. That is, we keep the firms that are consistently

observed from 2007 to 2017 in the administrative data. This balanced panel is

33Remark that this simplified approach assumes sampling St−1St to be mean-independent of
treatment status D and treatment selection variables X, conditional on Z.
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referred to as the exhaustive panel. We use the long DiD, the chained DiD and the

cross-section DiD on this exhaustive panel.

Then, we construct an unbalanced version of this panel by discarding all observations

whenever a firm was not sampled in the R&D survey in a given year. Both the chained

DiD and cross section DiD estimators are used on this (artificial) unbalanced panel.

The objective is to study how each estimator is affected by discarding observations,

and compare its performance to the long DiD.

Results are summarized in Figures 1 and 2 for the effects on total workforce and

Figures 3 and 4 for highly qualified workers, along with 95% confidence intervals

obtained from the multiplier bootstrap.34 They show the dynamic treatment effects

relative to the beginning of the treatment obtained on a panel balanced on exhaustive

variables.35 Table B.1 and Table B.2 in the Online Appendix provide additional

details, including pre-trend tests rejecting the null hypothesis of pre-trends.
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Figure 1: Effects on total workforce for selected estimators

34To maximize readability, Figures 2 and 4 are the same as Figures 1 and 3, respectively, to
which we have added the cross-section DiD on the unbalanced panel, whose variance is very high.

35“Exhaustive” refers to the exhaustively observed outcome. “Unbalanced” refers to the use of
an exhaustively observed outcome from which we artificially discard all observations identified as
missing in the R&D survey.
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Figure 2: Effects on total workforce for all estimators
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Figure 3: Effects on highly qualified workforce for selected estimators
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Figure 4: Effects on highly qualified workforce for all estimators

The long DiD reveals that total employment has increased by 5.7% the year after

the project started (β2 in Table B.1). The long-term increase amounts to 12% five

years after the start. For highly qualified workers, the effect is also positive but not

statistically significant during the first two years. It becomes significant from the

third year onwards.

As expected, the estimates obtained using the complete (exhaustive) panel are very

similar between the long DiD, the chained DiD and the cross-section DiD estimators.

The standard errors are also similar between the long DiD and the chained DiD

estimators but they are much higher for the cross section DiD estimator, which

suggests that the variance of the unobserved heterogeneity is large in this data. On

the one hand, the estimated coefficients remain quite similar and the standard errors

are only slightly higher with the chained DiD estimator on the unbalanced panel.

On the other hand, the estimates are considerably worse when obtained with the

cross-section DiD estimator on the unbalanced panel (Figures 2 and 4). The point

estimates are different and the standard errors become too large to appreciate the

effects of the policy.

Finally, we apply the chained DiD and cross-section DiD estimators on outcomes

similar to those studied just above but coming from the R&D survey. In this context,
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it is not possible to apply the standard long DiD estimator because there are too

few observations to calculate long differences. For consistency reasons, we present

estimates obtained on the same set of firms as those used for the tables B.1 and

B.2.36

The outcome variables do not correspond to the exact same definition of employ-

ment depending on whether they come from the exhaustive administrative source or

from the R&D survey. Total employees headcount from DADS administrative data

corresponds to observations at the legal unit level, whereas the R&D survey some-

times provide information on employment at the group level.37 The employment of

highly qualified workers from the DASD is close to the number of R&D researchers

and engineers filled in the R&D survey. Highly qualified workers include engineers

but also qualified workers dedicated to other tasks than R&D. Conversely, R&D re-

searchers and engineers include researchers who are specifically assigned to research

tasks. Despite their difference, these variables measure similar outcomes and are

highly correlated, which justifies their comparison.

Results using outcome variables observed from R&D survey are presented in Figure

5, and details are provided in Table B.3 in the Online Appendix. The effects obtained

with the chained DiD on total employment are somewhat less significant than those

presented in Figure 1, but the coefficients have the same order of magnitude. As

might be expected since the policy directly aims at fostering R&D activities, the

effects on the number of researchers are stronger and more significant. On the other

hand, the effects obtained with the cross section DiD are, once again, much less

precise.

36That is, we use the set of data that is balanced on the exhaustive variables, which is then
merged with the R&D survey, and estimate the effects on the variables reported in the R&D
survey.

37A legal unit is a legal entity of public or private law. A firm, in the sense of a group, is an
economic entity that may comprise several legal units thanks to financial links.
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Figure 5: Effects using only R&D survey data

We identify two primary reasons for the superior performance of the chained DiD

estimator over the cross section DiD estimator in this application. First, employment

typically exhibits high temporal persistence, coupled with considerable unobserved

heterogeneity. Proposition 1 demonstrates that the time-dependence of the outcome

variable is a crucial determinant in the relative precision of these estimators. Second,

there may be sample selection due to unobservable time-persistent factors in the

R&D survey. Such selection arises if, for example, the propensity to consistently

participate in R&D surveys varies, possibly due to differences in resource availability,

past experience with surveys, corporate culture, or differing levels of motivation

across research teams in firms.

The time-persistent differences between high-performing and non-performing com-

panies are eliminated by first-differencing. If there are distinct dynamics between

treated and untreated firms, then differences could be observed even before treatment

initiation. However, placebo tests for pre-trends show no significant employment dif-

ferences upstream of initial treatment period between treatment and control groups

(effects β−3, β−2 and β−1 in Tables B.1 to B.3). This empirical test supports the

absence of a violation of the parallel trend assumption.

Finally, we reproduce the results of Tables B.1, B.2, and B.3 by estimating the
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treatment effects with the complete original sample from the administrative data,

without discarding the individual firms that are not consistently observed throughout

the period to create a balanced panel. The results are presented in Online Appendix

B and confirm the better performance of the chained DiD estimator.

5 Conclusion

In this paper, we have developed a new estimator to identify long-term treatment

effects in unbalanced panel data sets. This is an important issue, not only because of

attrition but also due to how surveys are designed. Common practices are either to

use a long DiD estimator by balancing the data, at the cost of losing precision and

possibly biasing the results, or to use a cross-section DiD estimator at the cost of not

accounting for unobserved heterogeneity. We introduce a new method that simply

consists of aggregating short-term DiD estimators obtained from two periods. Our

theoretical results show that this estimator identifies the average treatment effects

of interest, is consistent and asymptotically normal, accounts for treatment hetero-

geneity and varying treatment timing, as well as general missing data patterns, and

may deliver efficiency gains. An application to an innovation policy implemented in

France reveals that, indeed, this estimator allows identifying statistically significant

long-term treatment effects where previous methods fail to do so.
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Online Appendices

Bellégo, C., Benatia, D. and V. Dortet-Bernadet (2024) The Chained Difference-in-

Differences. To appear in the Journal of Econometrics.

Appendix A collects all the proofs and Appendix B provides additional results for the

empirical application.

A Mathematical Appendix

A.1 Simple setting

Proof 1 (Proof of Proposition 1) In order to identify and estimate the ATT (t) in this

simple setting, we impose the following standard assumptions.

Assumption 10 (Sampling) For all t = 1, ..., T , {Yit, Yit+1, Di1, Di2, ..., DiT }nt
i=1 is in-

dependent and identically distributed (iid) conditional on St,t+1 = 1.

Assumption 11 (Missing Completely At Random) For all t = 1, ..., T ,

Pr(St = 1|Y1, ..., YT , D1, ..., DT ) = Pr(St = 1). (28)

Assumption 12 (Unconditional Parallel Trends) For all t = 2, ..., T ,

E [Yt(0)− Yt−1(0)|G = 1] = E [Yt(0)− Yt−1(0)|C = 1] a.s.. (29)

Assumption 13 (Irreversibility of Treatment) For all t = 2, ..., T ,

Dt−1 = 1 implies that Dt = 1. (30)

Assumption 14 (Existence of Treatment and Control Groups)

P (G = 1) = 1− P (C = 1) ∈ (0, 1). (31)

Substituting (4) and rearranging yields

1



̂ATTCD(t) =

t−1∑
τ=1

1

n

n∑
i=1

{
ŵG
iττ+1 (yiτ+1 − yiτ )− ŵC

iττ+1 (yiτ+1 − yiτ )
}

=

t−1∑
τ=1

1

n

n∑
i=1

{
ŵG
iττ+1 (δτ+1 − δτ + βt + εiτ+1 − εiτ )− ŵC

iττ+1 (δτ+1 − δτ + εiτ+1 − εiτ )
}

=
t−1∑
τ=1

[
1

n

n∑
i=1

ŵG
iττ+1βτ+1 +

1

n

n∑
i=1

(
ŵG
iττ+1 − ŵC

iττ+1

)
(εiτ+1 − εiτ )

]

=
t∑

τ=2

βτ +
t−1∑
τ=1

[
1

n

n∑
i=1

ŵG
iττ+1 (εiτ+1 − εiτ )−

1

n

n∑
i=1

ŵC
iττ+1 (εiτ+1 − εiτ )

]
,

where the second equality follows from the fact that wG
iττ+1 ̸= 0 and wC

iττ+1 ̸= 0 only

if yiτ+1 − yiτ is observed, and the fourth and fifth equalities follow from
∑n

i=1 ŵ
G
iττ+1 =∑n

i=1 ŵ
C
iττ+1 = 1. The second term in the final expression vanishes in expectations from

Assumptions 10 and 12.

The second estimator is given by

̂ATTCS(t) =
1

n

n∑
i=1

{(
ŵG
ityit − ŵG

i1yi1

)
−
(
ŵC
ityit − ŵC

i1yi1

)}
=
1

n

n∑
i=1

(
ŵG
it − ŵC

it

)
yit −

1

n

n∑
i=1

(
ŵG
i1 − ŵC

i1

)
yi1

=
1

n

n∑
i=1

(
ŵG
it − ŵC

it

)(
αi + δt +

t∑
τ=2

βτDiτ + εit

)
− 1

n

n∑
i=1

(
ŵG
i1 − ŵC

i1

)
(αi + δ1 + εi1)

=
1

n

n∑
i=1

ŵG
it

t∑
τ=2

βτ +
1

n

n∑
i=1

(
ŵG
it − ŵC

it − ŵG
i1 + ŵC

i1

)
αi +

1

n

n∑
i=1

(
ŵG
it − ŵC

it

)
δt

− 1

n

n∑
i=1

(
ŵG
i1 − ŵC

i1

)
δ1 +

1

n

n∑
i=1

(
ŵG
it − ŵC

it

)
εi1 −

1

n

n∑
i=1

(
ŵG
i1 − ŵC

i1

)
εi1

=

t∑
τ=2

βτ +
1

n

n∑
i=1

(
ŵG
it − ŵC

it

)
εit −

1

n

n∑
i=1

(
ŵG
i1 − ŵC

i1

)
εi1

+
1

n

n∑
i=1

(
ŵG
it − ŵC

it

)
αi −

1

n

n∑
i=1

(
ŵG
i1 − ŵC

i1

)
αi,
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where the second and third terms vanish in expectations under Assumption 12. Finally,

the expectation of the last term equates zero under Assumption 11.

Following similar steps, the corresponding long DiD estimator would be given by

̂ATTLD(t) = =
t∑

τ=2

βτ +

[
1

n

n∑
i=1

ŵG
i1t (εit − εi1)−

1

n

n∑
i=1

ŵC
i1t (εit − εi1)

]
,

if balanced panel data was available.

We will prove the asymptotic normality of these estimators in the general framework in

Theorem 2. In this proof, we only derive their asymptotic variance for the mentioned

example.

E

[
n
(

̂ATTCD(t)−ATT (t)
)2]

= nE

( t−1∑
τ=1

[
1

n

n∑
i=1

(
ŵG
iττ+1 − ŵC

iττ+1

)
(εiτ+1 − εiτ )

])2


=
t−1∑
τ=1

1

n

n∑
i=1

E

[(
ŵG
iττ+1 − ŵC

iττ+1

)2
(εiτ+1 − εiτ )

2

]

=
t−1∑
τ=1

1

n

n∑
i=1

E

[(
ŵG
iττ+1 − ŵC

iττ+1

)2]
E
[
(εiτ+1 − εiτ )

2
]
,

=

t−1∑
τ=1

E

[(
ŵG
iττ+1 − ŵC

iττ+1

)2]
E
[
(εiτ+1 − εiτ )

2
]
,

where the third equality follows from independence of G and εiτ+1 − εiτ . As n → ∞, the

weak law of large numbers implies E

[
ŵG
iττ+1

2
]

p→ 1
P (SτSτ+1G=1) because Sitt+1ai ∈ 0, 1 and

E[Sitt+1aiSjtt+1aj ] = 0 for i ̸= j. Therefore, the asymptotic variance for n→ ∞ is

E

[
n
(

̂ATTCD(t)−ATT (t)
)2]

=
t−1∑
τ=1

[
1

qp
+

1

q(1− p)

] [
(ρ− 1)2σ2ε + σ2η

]
=

(t− 1)

qp(1− p)

2(1− ρ)

1− ρ2
σ2η

= 2
(t− 1)

qp(1− p)

1

1 + ρ
σ2η,

when assuming P (SiτSiτ+1) = q ∈ (0, 1) for all τ, i and P (Gi = 1) = p ∈ (0, 1). Note

that this variance is bounded below by 1
qp(1−p)(t− 1)σ2η when ρ = 1, and bounded above by
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1
qp(1−p)2(t− 1)σ2η, when ρ = 0. Also, having a complete panel implies q = 1 in this setting.

Similarly, the variance of the second estimator can be developed into

E

[
n
(

̂ATTCS(t)−ATT (t)
)2]

=E

[(
ŵG
it − ŵC

it

)2]
σ2εt + E

[(
ŵG
i1 − ŵC

i1

)2]
σ2ε1

+ E

[(
ŵG
it − ŵC

it

)2
α2
i

]
+ E

[(
ŵG
i1 − ŵC

i1

)2
α2
i

]
− E

[(
ŵG
i1 − ŵC

i1

)
αi

]
E
[(
ŵG
it − ŵC

it

)
αi

]
=E

[(
ŵG
it − ŵC

it

)2]
σ2εt + E

[(
ŵG
i1 − ŵC

i1

)2]
σ2ε1

+ 2E

[(
ŵG
it − ŵC

it

)2]
σ2α,

=
1

qp(1− p)
(0.5σ2εt + σ2ε1 + σ2α),

where the second equality follows from the independence of outcomes and sampling as well as

G and αi. As n → ∞, we have E

[
ŵG
iτ

2
]

p→ 1
P (SτG=1) =

1
P (SτSτ+1G=1)+P (Sτ−1SτG=1) =

1
2pq

for 1 < τ < T , and E

[
ŵG
iτ

2
]

p→ 1
P (SτG=1) = 1

pq for τ = 1 or τ = T , because we have two

overlapping samples in each period except for the first and last. For t < T , the asymptotic

variance as n→ ∞ is thus

E

[
n
(

̂ATTCS(t)−ATT (t)
)2] p→ 1

qp(1− p)

(
1.5σ2ε1 + σ2α + (t− 1)σ2η

)
, for ρ = 1,

E

[
n
(

̂ATTCS(t)−ATT (t)
)2] p→ 1

qp(1− p)

(
σ2α + 1.5

σ2η
1− ρ2

)
, for ρ ∈ (0, 1),

and therefore

E

[
n
(

̂ATTCS(t)−ATT (t)
)2] p→ 1

qp(1− p)

(
σ2α + 1.5σ2η

)
, for ρ = 0.

In the complete panel setting, the weights are slightly different, and similar computations

give

E

[
n
(

̂ATTCS(t)−ATT (t)
)2] p→ 1

p(1− p)

[
(ρt−1 − 1)2σ2ε1 + σ2η

t−2∑
τ=0

ρ2τ + 2σ2α

]
,
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Following similar steps, it is easy to show that the asymptotic variance of the long-DiD for

n→ ∞ is

E

[
n
(

̂ATTLD(t)−ATT (t)
)2] p→ 1

qp(1− p)

[
(ρt−1 − 1)2σ2ε1 + σ2η

t−2∑
τ=0

ρ2τ

]
,

that is 1
qp(1−p)2σ

2
η if ρ = 0 and 1

qp(1−p)(t − 1)σ2η if ρ = 1, assuming the rotating sam-

ples consist of the same individuals over the entire time horizon. Therefore, the chained

DiD estimator achieves the minimum variance, i.e. that of the long DiD estimator when

idiosyncratic errors follow a random walk. The chained DiD estimator is therefore an ef-

ficient estimator in both the balanced and unbalanced panel settings when errors follow a

random walk.

Comparing CD and CS variance for ρ ∈ (0, 1), we have that CD has smaller variance if

2(t − 1)σ2η/(1 + ρ) ≤ 1.5σ2η/(1 − ρ2) + σ2α. If ρ = 0, this condition becomes σ2η/2 ≤ σ2α for

t = 2, and 5σ2η/2 ≤ σ2α for t = 6.

A.2 General framework

A.2.1 Proofs for rotating panel setting

Proof 2 (Proof of Theorem 1) This proof focuses on the identification of parameters

in the general framework with a rotating panel structure. Let us define ATTX(g, τ) =

E[Yτ (1)− Yτ (0)|X,Gg = 1] to write its first-difference as

∆ATTX(g, τ) = ATTX(g, τ)−ATTX(g, τ − 1)

= E[Yτ (1)− Yτ (0)|X,Gg = 1]− E[Yτ−1(1)− Yτ−1(0)|X,Gg = 1]

= E[Yτ − Yτ−1|X,Gg = 1, Sτ,τ−1 = 1]− E[Yτ − Yτ−1|X,C = 1, Sτ,τ−1 = 1]

= AX(g, τ)−BX(g, τ)

where the third equality follows from the conditional parallel trends assumption and the

sampling independence. Proofs of Corollary 1] and 2] show how to adjust for sample selec-

tion on observables.
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We can use the above expression to develop ATT (g, t) into

ATT (g, t) = E (E[Yt(1)− Yt(0)|X,Gg = 1]|Gg = 1)

= E (ATTX(g, t)|Gg = 1)

= E

(
t∑

τ=g

∆ATTX(g, τ)|Gg = 1

)

=

t∑
τ=g

E (∆ATTX(g, τ)|Gg = 1)

=

t∑
τ=g

E (AX(g, τ)−BX(g, τ)|Gg = 1)

(32)

with
E (AX(g, τ)|Gg = 1) = E (Yτ − Yτ−1|Gg)

= E (E[Yτ − Yτ−1|X,Gg]|Gg)

= E (E[Yτ − Yτ−1|X,Gg, SτSτ−1]|Gg)

= E

(
E[

SτSτ−1

E[SτSτ−1|X,Gg]
(Yτ − Yτ−1)|X,Gg]|Gg

)
= E

(
E[

SτSτ−1

E[SτSτ−1|Gg]
(Yτ − Yτ−1)|X,Gg]|Gg

)
= E

(
SτSτ−1

E[SτSτ−1|X,Gg]
(Yτ − Yτ−1)|Gg

)
= EM

(
(Yτ − Yτ−1)

GgSτSτ−1

E[SτSτ−1|Gg]E[Gg]

)

(33)

by the law of iterated expectations and the definition of FM . Following the proofs of Theorem

1 and B.1 of Callaway and Sant’Anna (2021), the second term can be developed into38

38We alleviate notations by dropping = 1 from conditioning sets.
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E(BX(g, τ)|Gg = 1) = E(E[Yτ − Yτ−1|X,C, Sτ,τ−1]|Gg)

= E(E[
SτSτ−1

E[SτSτ−1|X,C]
(Yτ − Yτ−1)|X,C]|Gg)

= E(E[
SτSτ−1

E[SτSτ−1|C]
(Yτ − Yτ−1)|X,C]|Gg)

= E

(
E[

SτSτ−1

E[SτSτ−1|C]
C

1− P (Gg = 1|X,Gg + C)
(Yτ − Yτ−1)|X,Gg + C = 1]|Gg

)

=
E
(
GgE[ SτSτ−1

E[SτSτ−1|C]
C

1−P (Gg |X,Gg+C)(Yτ − Yτ−1)|X,Gg + C]|Gg + C
)

P (Gg = 1|Gg + C)
,

(34)

where using the definition of pg yields

... =
E
(
GgE[ SτSτ−1

E[SτSτ−1|C]
C

1−pg(X)(Yτ − Yτ−1)|X,Gg + C]|Gg + C
)

P (Gg = 1|Gg + C)
,

=
E
(
E[ SτSτ−1

E[SτSτ−1|C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X,Gg + C]|Gg + C

)
E(Gg|Gg + C)

,

=
E
(
(Gg + C)E[ SτSτ−1

E[SτSτ−1|C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X,Gg + C]

)
E(Gg|Gg + C)E(Gg + C)

,

=
E
(
(Gg + C)E[ SτSτ−1

E[SτSτ−1|C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X,Gg + C]

)
E(Gg)

,

=
E
(
E[(Gg + C)|X]E[ SτSτ−1

E[SτSτ−1|C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X,Gg + C]

)
E(Gg)

=
E
(
E[ SτSτ−1

E[SτSτ−1|C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X]

)
E(Gg)

=
E
(

SτSτ−1

E[SτSτ−1|C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)

)
E(Gg)

=
E
(

E(GgSτSτ−1)
E[SτSτ−1|C]E(Gg)

pg(X)CSτSτ−1

1−pg(X) (Yτ − Yτ−1)
)

E(GgSτSτ−1)

(35)
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with

EM

(
pg(X)CSτ,τ−1

1− pg(X)

)
= EM (

EM (Gg|X,Gg + C = 1)

EM (C|X,Gg + C = 1)
CSτ,τ−1)

= EM (
EM (Gg|X)EM (CSτ,τ−1|X)

EM (C|X)
)

= EM (
EM (Gg|X)E(Sτ,τ−1|C,X)EM (C|X)

EM (C|X)
)

= EM (EM (Gg|X)E(Sτ,τ−1|C,X))

= E(Sτ,τ−1|C)EM (Gg).

(36)

Finally, the proof that identification is not guaranteed with the repeated cross-sectional

estimator (cross-section DiD) presented in Appendix B of Callaway and Sant’Anna (2021)

follows from taking a counterexample. Under Assumption 2, it is possible that E[Yt|X,C =

1, St = 1] = E[Yt|X,C = 1] but E[Yt|X,Gg = 1, St = 1] = E[Yt|X,Gg = 1]+αt with α > 0.

Following the steps of the proof it is is easy to show that the cross-section DiD identifies

ATT (g, t) + α(t− g + 1).

Proof 3 (Proof of Theorem 2) This proof is adapted from Callaway and Sant’Anna

(2021) ’s Theorem 2. We proceed in 3 steps.

Parametric propensity scores and notations. First, we introduce additional no-

tations and explain Assumption 5 in Callaway and Sant’Anna (2021) about the estimation

of propensity scores.39 Let Wi = (Yit, Yit+1, Xi, Gi1, Gi2, ..., , GiT , Ci)
′ denote the data for

an individual i observed in t and t+ 1. Assumption 5 in Callaway and Sant’Anna (2021)

assumes that the propensity scores, parametrized as pg(Xi) = Λ(X ′
iπ

0
g) with Λ(·) being

a known function (logit or probit), can be parametrically estimated by maximum likeli-

hood. We denote p̂g(Xi) = Λ(X ′
iπ̂g) where π̂g are estimated by ML, ṗg = ∂pg(u)/∂u, and

ṗg(X) = ṗg(X
′
iπ

0
g). Under this assumption, the estimated parameter π̂g is asymptotically

linear, i.e.,
√
n(π̂g − π0g) =

1√
n

∑
i

ξπg (Wi) + op(1),

where ξπg (Wi) is defined in (3.1) is Callaway and Sant’Anna (2021) and does not depend

on the sampling process since X is observed for all individuals.

39This is a standard assumption in the literature so it is not reproduced here.

8



Let us now define,

ψgt(Wi) = ψG
gt(Wi) + ψG

gt(Wi), (37)

where

ψG
gt(Wi) =w

G
it,t−1(g)

[
(Yit − Yit−1)− EM

[
wG
it,t−1(g)(Yit − Yit−1)

]]
,

ψC
gt(Wi) =w

C
it,t−1(g,X)

[
(Yit − Yit−1)− EM

[
wC
it,t−1(g,X)(Yit − Yit−1)

]]
+M ′

gtξ
π
g (Wi),

and

Mgt =
EM

[
X(CStSt−1

1−pg(X))
2ṗg(X)

[
(Yit − Yit−1)− EM

[
wC
it,t−1(g,X)(Yit − Yit−1)

]]]
EM [

pg(X)C
1−pg(X) ]

.

is a k dimensional vector, k being the number of covariates in X. Finally, let ∆̂ATT g≤t

and ∆ATTg≤t denote the vectors of all ∆̂ATT (g, t) and ∆ATT (g, t) for any 2 ≤ g ≤ t ≤ T .

Similarly, the collection of ψgt across all periods and groups such that g ≤ t is denoted by

Ψg≤t.

Asymptotic result for ∆ATT . Second, we show the asymptotic result for ∆ATT .

Recall that

ÂTT (g, t) =
t∑

τ=g

∆̂ATT (g, τ),

where

∆̂ATT (g, τ) = ÊM

[
GgSτ−1Sτ

ÊM [GgSτ−1Sτ ]
(Yτ − Yτ−1)

]
− ÊM

 pg(X)CSτ−1Sτ

1−pg(X)

ÊM

[
pg(X)CSτ−1Sτ

1−pg(X)

](Yτ − Yτ−1)


= ∆̂ATT g(g, τ)− ∆̂ATTC(g, τ),

where Ê denotes the empirical mean. We will show separately that, for all for all 2 ≤ g ≤
t ≤ T ,

√
n
(
∆̂ATT g(g, t)−∆ATTg(g, t)

)
=

1√
n

∑
i

ψG
gt(Wi) + op(1), (38)

and
√
n
(
∆̂ATTC(g, t)−∆ATTC(g, t)

)
=

1√
n

∑
i

ψC
gt(Wi) + op(1), (39)
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which together implies

√
n
(
∆̂ATT (g, t)−∆ATT (g, t)

)
=

1√
n

∑
i

ψgt(Wi) + op(1) (40)

and the asymptotic normality of
√
n
(
∆̂ATT g≤t −∆ATTg≤t

)
follows from the multivariate

central limit theorem.

First, we show (38). Let βg = EM [GgSτ−1Sτ ] and β̂g = ÊM [GgSτ−1Sτ ] and note that

√
n
(
β̂g − βg

)
=

1√
n

∑
i

(GigSiτ−1Siτ − E[GgSτ−1Sτ ])
p→ 0, as n→ +∞.

Then, for all 2 ≤ g ≤ t ≤ T ,

√
n(∆̂ATT g(g, t)−∆ATTg(g, t)) =

√
nÊM

[
GgSt,t−1

β̂g
(Yt − Yt−1)

]
−
√
nEM

[
GgSt,t−1

βg
(Yt − Yt−1)

]

=

√
n

β̂g
(ÊM [GgSt,t−1(Yt − Yt−1)]−

β̂g
βg
EM [GgSt,t−1(Yt − Yt−1)])

=

√
n

β̂g
(ÊM [GgSt,t−1(Yt − Yt−1)]− EM [GgSt,t−1(Yt − Yt−1)]),
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and by the continuous mapping theorem,

√
n(∆̂ATT g(g, t)−∆ATTg(g, t)) =

√
n

βg
(ÊM [GgSt,t−1(Yt − Yt−1)]− EM [GgSt,t−1(Yt − Yt−1)])

−
√
n

(
1

βg
− 1

β̂g

)
EM [GgSt,t−1(Yt − Yt−1)] + op(1)

=

√
n

βg
(ÊM [GgSt,t−1(Yt − Yt−1)]− EM [GgSt,t−1(Yt − Yt−1)])

−

√
n
(
β̂g − βg

)
β2g

EM [GgSt,t−1(Yt − Yt−1)] + op(1)

=

√
n

βg
(ÊM [GgSt,t−1(Yt − Yt−1)]−

β̂g
βg
EM [GgSt,t−1(Yt − Yt−1)]) + op(1)

=
1√
n

∑
i

Gig
Sit,t−1(Yit − Yit−1)−∆ATT (g, t)

βg
+ op(1)

=
1√
n

∑
i

wG
it,t−1(g)

[
(Yit − Yit−1)− EM

[
wG
t,t−1(g)(Yt − Yit−1)

]]
+ op(1)

=
1√
n

∑
i

ψG
gt(Wi) + op(1),

proving (38).

Let us now turn to (39). For an arbitrary function g, let

wt(g) =
g(X)CSt,t−1

1− g(X)
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and note that

√
n(∆̂ATTC(g, t)−∆ATTC(g, t)) =

√
n

(
ÊM

[
wt(p̂g)

ÊM [wt(p̂g)]
(Yt − Yt−1)

]
− EM

[
wt(pg)

EM [wt(pg)]
(Yt − Yt−1)

])

=

√
n

ÊM [wt(p̂g)]

(
ÊM [wt(p̂g)(Yt − Yt−1)]−

ÊM [wt(p̂g)]

EM [wt(pg)]
EM [wt(pg)(Yt − Yt−1)]

)

=

√
n

ÊM [wt(p̂g)]

(
ÊM [wt(p̂g)(Yt − Yt−1)]− EM [wt(pg)(Yt − Yt−1)]

)
− EM [wt(pg)(Yt − Yt−1)]

ÊM [wt(p̂g)]EM [wt(pg)]

√
n(ÊM [wt(p̂g)]− ÊM [wt(pg)])

=
1

ÊM [wt(p̂g)]

√
nAn(p̂g)−

∆ATTC(g, t)

ÊM [wt(p̂g)]

√
nBn(p̂g)

=
1

EM [wt(pg)]

√
nAn(p̂g)−

∆ATTC(g, t)

EM [wt(pg)]

√
nBn(p̂g) + op(1),

where the last equality follows directly from Assumption 5, which implies Lemma A.2 and

Lemma A.3 in Callaway and Sant’Anna (2021). Applying the mean value theorem yields

An(p̂g) =ÊM [wt(pg)(Yt − Yt−1)]− EM [wt(pg)(Yt − Yt−1)]

+ ÊM

[
X

CSt,t−1

(1− pg(X;π))2
ṗg(X;π)(Yt − Yt−1)

]′ (
π̂g − π0g

)
,

where π is an intermediate point that satisfies |πgπ0g | ≤ |π̂gπ0g | a.s. Thus, by Assumption

5, the previously mentioned Lemmas, and the Classical Glivenko-Cantelli’s theorem,

An(p̂g) =ÊM [wt(pg)(Yt − Yt−1)]− EM [wt(pg)(Yt − Yt−1)]

+ ÊM

[
X

CSt,t−1

(1− pg(X))2
ṗg(X)(Yt − Yt−1)

]′ (
π̂g − π0g

)
+ op(n

−1/2),

and using the same reasoning we obtain

Bn(p̂g) =ÊM [wt(pg)]− EM [wt(pg)]

+ ÊM

[
X

CSt,t−1

(1− pg(X))2
ṗg(X)

]′ (
π̂g − π0g

)
+ op(n

−1/2).

Combining the above results and making use of the same Lemma yields (40) hence concludes

the proof for ∆ATT . The asymptotic covariance is given by Σ∆ = E [Ψg≤τ (Wi)Ψg≤τ (Wi)
′].
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Asymptotic result for ATT . Finally, by making use of (40) we have that

√
n
(
ÂTT (g, t)−ATT (g, t)

)
=

t∑
τ=g

√
n
(
∆̂ATT (g, τ)−∆ATT (g, τ)

)

=
1√
n

∑
i

[
t∑

τ=g

ψgτ (Wi)

]
+ op(1)

d→ N(0,Σ),

where Σ = EM [Φg≤τ (Wi)Φg≤τ (Wi)
′] with Φg≤τ (Wi) =

∑t
τ=g Ψg≤τ (Wi).

Therefore, the influence function of the chained DiD estimator corresponds to the sum of

influence functions of the short-term DiD estimator.

A.2.2 Bootstrap implementation for rotating panel setting

Bootstrapped confidence bands for ÂTT (g, t). The algorithm is as follows:

1. Draw a vector of Vb = (V1, ..., Vi, ..., Vn)
′, where Vi’s are iid zero mean random

variables with unit variance, such as Bernoulli random variables with Pr(V = 1 −
κ) = κ/

√
5 with κ = (

√
5 + 1)/2 as suggested by Mammen (1993).

2. Compute the bootstrap draw ÂTT
⋆b

g≤t = ÂTT g≤t + Φ̂g≤τV
b where Φ̂g≤τ is a consis-

tent estimator of Φg≤τ (see below).

3. Compute R̂⋆b(g, t) =
√
n(ÂTT

⋆b
(g, t) − ÂTT (g, t)) for each element of the vector

ÂTT
⋆b

g≤t.

4. Repeat steps 1-3 B times. Note: do not re-estimate propensity scores and parameters

for each draw.

5. Compute the bootstrapped covariance for each (g, t) as Σ̂1/2(g, t) = (q0.75(g, t) −
q0.25(g, t))/(z0.75 − z0.25), where qp(g, t) is the pth sample quantile of R̂⋆ (across B

draws) and z(g, t) is the pth quantile the standard normal distribution.

6. For each b, compute t-statbg≤t = max(g,t) |R̂⋆b(g, t)|Σ̂−1/2(g, t).

7. Construct ĉ1−α as the empirical (1−α) quantile of the B boostrap draws of t-statbg≤t.
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8. Construct the bootstrapped simultaneous confidence band for ATT (g, t) as Ĉ(g, t) =

[ÂTT (g, t)± ĉ1−αΣ̂
−1/2(g, t)/

√
n].

This procedure requires to compute Φ̂g≤τ , represented here as a K × n matrix, with n

being the number of observations and K = T (T −1)
2 being the number of (g, t) element for

any 2 ≤ g ≤ t ≤ T . This is done as follows:

1. For every (g, t), compute the n-dimensional vector ψgt with ith element defined as

ψgt(i) = ψG
gt(i) + ψC

gt(i), where

ψG
gt(i) =w

G
it,t−1(g)

[
(Yit − Yit−1)− EM

[
wG
t,t−1(g)(Yt − Yt−1)

]]
,

ψC
gt(i) =w

C
it,t−1(g,X)

[
(Yit − Yit−1)− EM

[
wC
t,t−1(g,X)(Yt − Yt−1)

]]
+M ′

gtξ
π
g (i),

whereMgt, a k dimensional vector (k being the number of covariates in X), is defined

as

Mgt =
E
[
X(CStSt−1

1−pg(X))
2ṗg(X)

[
(Yit − Yit−1)− E

[
wC
t,t−1(g,X)(Yt − Yit−1)

]]]
E[

pg(X)C
1−pg(X) ]

,

with p̂g(Xi) = Λ(X ′
iπ̂g) being the parametric propensity score for covariates Xi and

ṗg(X) = ∂Λ(X ′
iπ̂g)/∂(X

′
iπ̂g). Furthermore, ξπg (i) is a k-dimensional vector for each

observation i, and is given by

ξπg (i) = EM

[
(Gg + C)ṗg(X)2

pg(Xi)(1− pg(Xi))
XX ′

]−1

Xi
(Gg + C)(Gg − pg(Xi))ṗg(Xi)

pg(Xi)(1− pg(Xi))
.

2. Compute ϕgt =
∑t

τ=g ψg≤τ for all 2 ≤ g ≤ t ≤ T .

3. Concatenate all ϕgt’s into a K × n matrix Φg≤t.

A.2.3 Summary parameters for rotating panel setting

The group-time average treatment effect ATT (g, t) consists of a building-block to study

the dynamic effect of a treatment on different cohorts of treated individuals. In most

applications, the main causal parameters of interest are not the ATT (g, t) themselves but

aggregate parameters of these building-blocks. In this section, we briefly mention the three
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main parameters of interest as proposed in Callaway and Sant’Anna (2021), and show how

the asymptotic results and multiplier bootstrap adapt to our setting.

Selective timing. The causal effect of a policy on the cohort treated in g is given by

θS(g) =
1

T − g + 1

T∑
t=g

ATT (g, t),

and thus, an average causal effect across groups can be written as

θS =
T∑

g=2

θS(g)Pr(G = g).

Dynamic treatment. In the presence of dynamic effects, the researcher may be inter-

ested in accounting for the length of exposure to the treatment. The causal effects of an

exposure length e ∈ {0, 1, 2, ...} across groups is defined as

θD(e) =
T∑

g=2

T∑
t=g+e

ATT (g, t)Pr(G = g|t = g + e),

and therefore an average across exposure lengths is given by

θD =
1

T − 1

T −1∑
e=1

θD(e).

Calendar time. In some applications, the researcher may be interested in how treat-

ment effects differ with calendar time. Let us consider

θC(t) =
t∑

g=2

ATT (g, t)Pr(G = g|g ≤ t),

and therefore an average across exposure lengths is given by

θC =
1

T − 1

T∑
t=2

θC(t),

The difference between θS , θD and θC is that the second and third attribute more weight to
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the groups with, respectively, longer exposure lengths, and treated in the earliest periods.

The asymptotic results and bootstrap procedure directly apply to the summary parameters.

The following corollary summarizes these results.

Corollary 3 Under the Assumptions of Theorem 2, for all parameters θ defined above,

including those indexed by some variable, we have

√
n(θ̂ − θ)

d→ N(0,Σθ),

as n→ ∞, where Σθ is defined in the proof and the bootstrap procedure is defined.

Proof 4 (Proof of Corollary 3) All summary parameters defined in the text can be

generically written as

θ =

T∑
g=2

T∑
t=2

wgtATT (g, t),

where wgt are some random weights. Estimators can be defined as

θ̂ =
T∑

g=2

T∑
t=2

ŵgtÂTT (g, t),

where estimated weights are such that

√
n(ŵgt − wgt) =

1√
n

n∑
i=1

ξwgt(Wi) + op(1),

with first and second moments given by E[ξwgt(W)] = 0 and E[ξwgt(W)ξwgt(W)′] finite and

positive definite. This condition is satisfied by the sample analogs of weights appearing in

the summary parameters θ’s presented in the main text. The application of Theorem 2

yields
√
n(θ̂ − θ) =

1√
n

n∑
i=1

lw(Wi) + op(1)

d→ N(0, E[lw(W)2])

as n→ ∞, and where

lw(Wi) =

T∑
g=2

T∑
t=2

{
wgt

t∑
τ=g

ψgτ (Wi) + ξwgt(Wi)ATT (g, t)

}
,
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for ψgt defined in (58) and ξwgt correspond to the estimation errors of weights. The same

bootstrap procedure can hence be used for θ̂ using a consistent estimate of the influence

function lw.

A.2.4 Bootstrap for summary parameters

All estimators of summary parameters defined in the text can be generically written as

θ̂ =
T∑

g=2

T∑
t=2

ŵgtÂTT (g, t),

where the weights ŵgt’s are possibly random. In simple settings they are not. For instance,

let us consider

θs(h) =

T∑
g=2

T∑
t=2

wgtATT (g, t),

where wgt =
1

T−g+1 for t ≥ g and g = h, and 0 otherwise. The algorithm is as follows:

1. Draw a vector of Vb = (V1, ..., Vi, ..., Vn)
′, where Vi’s are iid zero mean random

variables with unit variance, such as Bernoulli random variables with Pr(V = 1 −
κ) = κ/

√
5 with κ = (

√
5 + 1)/2 as suggested by Mammen (1993).

2. Compute the bootstrap draw θ̂⋆b = θ̂ + L̂′Vb where L̂ is a consistent estimator of

the n-dimensional vector L with ith element given by

L(i) =
T∑

g=2

T∑
t=2

wgtϕgt(i),

where ϕgt(i) is defined in the previous algorithm.

3. Compute R̂⋆b =
√
n(θ̂⋆b − θ̂).

4. Repeat steps 1-3 B times.

5. Compute the bootstrapped covariance as Σ̂1/2 = (q0.75 − q0.25)/(z0.75 − z0.25), where

qp is the pth sample quantile of R̂⋆ (across B draws) and z is the pth quantile of the

standard normal distribution.

6. For each b, compute t-statbg≤t = max(g,t) |R̂⋆b(g, t)|Σ̂−1/2(g, t).
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7. Construct ĉ1−α as the empirical (1− α) quantile of the B boostrap draws t-statb.

8. Construct the bootstrapped confidence interval for θ as Ĉ = [θ̂ ± ĉ1−αΣ̂
−1/2/

√
n].

If the weights wgt’s are random, the influence function is changed to

L(i) =
T∑

g=2

T∑
t=2

wgtϕgt(i) + γwgt(i)ATT (g, t),

where γwgt(i) is an error function. For example, let us consider

θs =

T∑
g=2

T∑
t=2

wgtATT (g, t),

where wgt = P (G = g) 1
T−g+1 for t ≥ g , and 0 otherwise. Define ŵgt =

1
T−g+1

1
n

∑n
i=1Gi

for t ≥ g and 0 otherwise. A consistent estimator of the error function is given by

γ̂wgt(i) =
1

T − g + 1

(
Gi −

1

n

n∑
i=1

Gi

)
.

A.2.5 Not yet treated as the control group

In the previous model, we assumed the existence of a true control group, i.e. a group of

individuals that are never treated. In many applications, this situation is not realistic.

Instead, the researcher can use the individuals that are “not yet treated”, that is treated

in g > t to define a control group. The extension to this setting being developed in length

in Callaway and Sant’Anna (2021), we only explain how it applies to the chained DiD.

Most importantly, the parallel trend assumption is modified to

Assumption 15 (Conditional Parallel Trends) For all t = 2, ..., T , g = 2, ..., T , such

that g ≤ t,

E [Yt(0)− Yt−1(0)|X,Gg = 1] = E [Yt(0)− Yt−1(0)|X,Dt = 0] a.s.. (41)

Following minor modifications to Theorem C.1. in Callaway and Sant’Anna (2021), using

the “not yet treated” as the control group only changes the weight wC
ττ−1(g,X) used in

18



our Theorem 1 to

wC
ττ−1(g,X) =

pg,t(X)(1−Dt)Sτ,τ−1

1− pg,t(X)
/EM [

pg,t(X)(1−Dt)Sτ,τ−1

1− pg,t(X)
].

We observe two changes. First, the binary variable C becomes 1−Dt. Second, generalized

propensity score is now also a function of t: pg,t(X) = P (Gg = 1|X, (Gg = 1 ∪Dt = 1)).

The propensity scores must hence be estimated for pairs (g, t) because the control group

evolves through time. The asymptotic properties of the two-step estimator remain similar,

with minor changes to the asymptotic covariance.

A.2.6 General missing data patterns

Under Assumption 8, the data generating process consists of random draws from the mix-

ture distribution FM (y, y′, g1, ..., gT , c, s1, ..., sT , x) defined as

T∑
t=1

λt−k,tFYt−k,Yt,G1,...,GT ,C,X|St−k,t
(yt−k, yt, g1, ..., gT , C,X|st−k,t = 1),

where λt−k,t = P (St−k,t = 1) is the probability of being sampled in both t and t − k, y

and y′ denote the outcome yt−k and yt, respectively, for an individual sampled at t−k and

t. Again, expectations under the mixture distribution does not correspond to population

expectations. This difference arises because of different sampling probabilities across time

periods and because Assumption 9 does not preclude from some forms of dependence

between the sampling process and the unobservable heterogeneity in Yit.

Proof 5 (Proof of Theorem 3) Let us define the vector of parameters Θ = ATT that

includes all θτ = ATT (τ), for all τ > 1 since θ1 = ATT (1) = 0 by construction. The

inverse problem in (23) corresponds to the set of moment equalities

EM [hi(Wi|Θ)] = 0L∆
, (42)

where hi(Wi|Θ) is a L∆-dimensional vector of which each element is defined by

[
wG
iττ−k(g) (Yiτ − Yiτ−k)− wC

iττ−k(g,X) (Yiτ − Yiτ−k)− θτ + θτ−k

]
, (43)
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possibly for all τ ≥ 2, and 1 ≤ k < τ , with the weights

wG
ττ−k(g) =

GgSτ,τ−k

EM [GgSτ,τ−k]

and

wC
ττ−k(g,X) =

pg(X)CSτ,τ−k

1− pg(X)
/EM [

pg(X)CSτ,τ−k

1− pg(X)
].

The previous asymptotic results in Theorem 1 and 2 apply to (43) up to minor modifications

under Assumptions 3 - 5, a standard assumption on the parametric estimates of the propen-

sity scores (Assumption 5 in Callaway and Sant’Anna (2021) or 4.4 in Abadie (2005)),

and Assumptions 8 and 9 so that we can safely assume that consistency and asymptotic

normality holds for ∆̂ATT as n → ∞ with covariance Ω, which is defined later. Here,

we focus on the aspects of the proofs which differ, namely the optimal combination of each

“chain link” using GMM. The optimal GMM estimator consists in minimizing

ÊM [hi(Wi|Θ)]′Ω−1ÊM [hi(Wi|Θ)] , (44)

with respect to Θ, using the optimal weighting matrix Ω−1 which corresponds the inverse

of the covariance of hi (Hansen, 1982), hence that of ∆ATT . Let us rewrite this problem

as

max
ATT

−( ̂∆ATT −WATT )′Ω−1(∆̂ATT −WATT ), (45)

then the first-order condition with respect to ATT is given by

−2( ̂∆ATT )−WATT )′Ω−1W = 0, (46)

which, in turn, leads to the proposed estimator:

ÂTT = (W ′Ω−1W )−1W ′Ω−1∆̂ATT . (47)

The necessary and sufficient rank condition for GMM identification in this linear setting

is that the rank of Ω−1W is equal to the number of columns (Newey and McFadden, 1994).

This condition is satisfied if both the covariance matrix Ω and the weight matrix W are

non-singular. Remark further that if W is not full row rank then some ATT (g, t) are not

identified by the collection of ∆kATT (g, t)’s identified in the dataset at hand.

Proving consistency requires introducing standard assumptions for GMM estimators. We
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assume that (i) Ω and the weight matrix W are non-singular; (ii) the true value Θ0 lies

within a compact set; and (iii) EM [supΘ ||hi(Wi|Θ)||] < ∞. In addition to our previous

assumptions, applying Theorem 2.6 in Newey and McFadden (1994) yields the desired

consistency result. Assuming further that (iv) Θ0 lies in the interior of the compact set;

(v) E[||hi(Wi|Θ0)||2, ] <∞; (vi) W ′Ω−1W non-singular, then asymptotic normality follows

from Theorem 3.4 in Newey and McFadden (1994).40

Note that the two-step GMM estimator requires estimating Ω. We proceed as follows. For

every (g, t, k), compute the n-dimensional vector ψgtk with ith element defined as

ψgtk(i) = ψG
gtk(i) + ψC

gtk(i), (48)

where

ψG
gtk(i) =w

G
it,t−k(g)

[
(Yit − Yit−k)− EM

[
wG
t,t−k(g)(Yt − Yt−k)

]]
,

ψC
gtk(i) =w

C
it,t−k(g,X)

[
(Yit − Yit−k)− EM

[
wC
t,t−k(g,X)(Yt − Yt−k)

]]
+M ′

gtkξ
π
g (i),

where Mgtk, a k dimensional vector (k being the number of covariates in X), is defined as

Mgtk =
E
[
X(

CStSt−k

1−pg(X))
2ṗg(X)

[
(Yit − Yit−k)− E

[
wC
t,t−k(g,X)(Yt − Yit−k)

]]]
E[

pg(X)C
1−pg(X) ]

,

with p̂g(Xi) = Λ(X ′
iπ̂g) being the parametric propensity score for covariates Xi and ṗg(X) =

∂Λ(X ′
iπ̂g)/∂(X

′
iπ̂g). Furthermore, ξπg (i) is a k-dimensional vector for each observation i,

and is given by

ξπg (i) = EM

[
(Gg + C)ṗg(X)2

pg(Xi)(1− pg(Xi))
XX ′

]−1

Xi
(Gg + C)(Gg − pg(Xi))ṗg(Xi)

pg(Xi)(1− pg(Xi))
.

Concatenate all ψgtk’s into a L∆ × n matrix Ψ, and compute Ω̂ = Ê[Ψ(i)Ψ(i)′].

Therefore, the asymptotic covariance of ÂTT is

Σ = (W ′Ω−1W )−1, (49)

and its corresponding influence function to be used in the bootstrap procedure detailed in

40All the other sufficient conditions used by these theorems are trivially satisfied in this linear
setting.
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Online Appendix A.2.2 is the empirical counterpart of

Φ = (W ′Ω−1W )−1W ′Ω−1Ψ. (50)

Finally, it is easy to show that the choice of the optimal weighting Ω−1 is the same if the

objective is instead to minimize the variance of a linear transformation R′ATT , where R

is a vector of weights, like for all the summary parameters considered in Online Appendix

A.2.3. In that case, the bootstrap for summary parameters in Online Appendix A.2.4 apply

with the (general) influence defined as follows. Let the weights in R be random, the influence

function is changed to

L(i) = R′Φ(i) + γw(i)′ATT ,

where γw is the error function that depends on the randomness of the weights, as defined

in Online Appendix A.2.4.
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Proof 6 (Proof of Corollary 1) This proof focuses on the identification of parameters

in the general framework with a rotating panel structure. We show that how attrition

models can be combined with our approach. Let us modify the definition from Theorem 1,

ATTX(g, τ) = E[Yτ (1)− Yτ (0)|X,Gg = 1] to write its first-difference as

∆ATTX(g, τ) = ATTX(g, τ)−ATTX(g, τ − 1)

= E[Yτ − Yτ−1|X,Gg = 1]− E[Yτ − Yτ−1|C = 1]

= AX(g, τ)−BX(g, τ)

where the second equality follows from the conditional parallel trends assumption. Again,

we can use the above expression to develop ATT (g, t) into

ATT (g, t) =

t∑
τ=g

E (AX(g, τ)−BX(g, τ)|Gg = 1) (51)

with

E (AX(g, τ)|Gg = 1) = E (Yτ − Yτ−1|Gg)

= E (E[Yτ − Yτ−1|X,Gg]|Gg)

= E (E[Yτ − Yτ−1|X,Gg, SτSτ−1]|Gg)

= E

(
E[

SτSτ−1

E[SτSτ−1|X,Gg]
(Yτ − Yτ−1)|X,Gg]|Gg

)
= E

(
SτSτ−1

E[SτSτ−1|X,Gg]
(Yτ − Yτ−1)|Gg

)
= EM

(
(Yτ − Yτ−1)

GgSτSτ−1

E[SτSτ−1|X,Gg]E[Gg]

)
= EM

( E[GgSτSτ−1]

E[SτSτ−1|X,Gg]E[Gg]
(Yτ − Yτ−1)

GgSτSτ−1

E[GgSτSτ−1]

)
= EM

( E[SτSτ−1|Gg]

E[SτSτ−1|X,Gg]
(Yτ − Yτ−1)

GgSτSτ−1

E[SτSτ−1|Gg]E[Gg]

)

(52)

by the law of iterated expectations and the definition of FM . The third equality follows from

the conditional mean independence between Yτ − Yτ−1 and SτSτ−1 conditional on X and

treatment assignment. Remark that if the conditional probability E[SτSτ−1|X,Gg] does not

depend on X, then we are back to Theorem 1. Similarly, we obtain
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E(BX(g, τ)|Gg = 1) = E(E[Yτ − Yτ−1|X,C, Sτ,τ−1]|Gg)

= E(E[
SτSτ−1

E[SτSτ−1|X,C]
(Yτ − Yτ−1)|X,C]|Gg)

= E

(
E[

SτSτ−1

E[SτSτ−1|X,C]
C

1− P (Gg = 1|X,Gg + C)
(Yτ − Yτ−1)|X,Gg + C = 1]|Gg

)

=
E
(
GgE[ SτSτ−1

E[SτSτ−1|X,C]
C

1−P (Gg |X,Gg+C)(Yτ − Yτ−1)|X,Gg + C]|Gg + C
)

P (Gg = 1|Gg + C)
,

(53)

where using the definition of pg yields

... =
E
(
GgE[ SτSτ−1

E[SτSτ−1|X,C]
C

1−pg(X)(Yτ − Yτ−1)|X,Gg + C]|Gg + C
)

P (Gg = 1|Gg + C)
,

=
E
(
E[ SτSτ−1

E[SτSτ−1|X,C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X,Gg + C]|Gg + C

)
E(Gg|Gg + C)

,

=
E
(
(Gg + C)E[ SτSτ−1

E[SτSτ−1|X,C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X,Gg + C]

)
E(Gg|Gg + C)E(Gg + C)

,

=
E
(
(Gg + C)E[ SτSτ−1

E[SτSτ−1|X,C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X,Gg + C]

)
E(Gg)

,

=
E
(
E[(Gg + C)|X]E[ SτSτ−1

E[SτSτ−1|X,C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X,Gg + C]

)
E(Gg)

=
E
(
E[ SτSτ−1

E[SτSτ−1|X,C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)|X]

)
E(Gg)

=
E
(

SτSτ−1

E[SτSτ−1|X,C]
pg(X)C
1−pg(X)(Yτ − Yτ−1)

)
E(Gg)

=
E
(

E(GgSτSτ−1)
E[SτSτ−1|X,C]E(Gg)

pg(X)CSτSτ−1

1−pg(X) (Yτ − Yτ−1)
)

E(GgSτSτ−1)

(54)

Therefore, one can estimate an attrition model ex-ante for each treatment group and the

control group to obtain E[SτSτ−1|X,Gg] and E[SτSτ−1|X,C], then reweight all first dif-

ferences in outcome by E(SτSτ−1|C)
E[SτSτ−1|X,C] and

E(SτSτ−1|Gg)
E[SτSτ−1|X,Gg ]

before applying our chained DiD

estimator. Notice that, in general, the attrition model does not require to use the same
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explanatory variable X than the propensity score pg(X). Remark, however, that we must

be able to identify E(Gg) in the population.

Proof 7 (Asymptotics for Corollary 1) We now derive the asymptotic distributions

considering the added uncertainty introduced by the estimation of a first-step selection model

(propensity scores) under the assumptions of Corollary 1.

First, we introduce additional notations about the estimation of propensity scores in the

modified weights

w̃G
ττ−1(g,X) =

E(SτSτ−1|Gg)

E[SτSτ−1|X,Gg]
wG
ττ−1(g,X), (55)

w̃C
ττ−1(g,X) =

E(SτSτ−1|C)
E[SτSτ−1|X,C]

wC
ττ−1(g,X). (56)

Let us denote the added term

lt(qa) =
E(SτSτ−1|a)

qa(X)
, (57)

with qa(Xi) = E[SτSτ−1|Xi, a] = Λ(X ′
iρ

0
a) a parametric propensity scores with Λ(·) being

a known function (logit or probit), that can be parametrically estimated by maximum like-

lihood. Remark that we could use other X’s here. We denote q̂a(Xi) = Λ(X ′
iρ̂a) where ρ̂a

are estimated by ML, q̇a = ∂qa(u)/∂u, and q̇a(X) = q̇a(X
′
iρ

0
a). Under this assumption, the

estimated parameter ρ̂a is asymptotically linear.

Let us now define,

ψgt(Wi) = ψG
gt(Wi) + ψG

gt(Wi), (58)

where

ψG
gt(Wi) =w̃

G
it,t−1(g,X)

[
(Yit − Yit−1)− EM

[
w̃G
it,t−1(g,X)(Yit − Yit−1)

]]
+NG′

gt ξ
ρ
g (Wi),

ψC
gt(Wi) =w̃

C
it,t−1(g,X)

[
(Yit − Yit−1)− EM

[
w̃C
it,t−1(g,X)(Yit − Yit−1)

]]
+M ′

gtξ
π
g (Wi) +NC′

gt ξ
ρ
C(Wi),

with

Mgt =
EM

[
lt(qC)X(CStSt−1

1−pg(X))
2ṗg(X)

[
(Yit − Yit−1)− EM

[
w̃C
it,t−1(g,X)(Yit − Yit−1)

]]]
EM [

pg(X)C
1−pg(X) ]

,
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NC
gt = −

EM

[
pg(X)C
1−pg(X)X

E(SτSτ−1|C)
qC(X;π)2

q̇C(X; ρ)
[
(Yit − Yit−1)− EM

[
w̃C
it,t−1(g,X)(Yit − Yit−1)

]]]
EM [

pg(X)C
1−pg(X) ]

,

NG
gt = −

EM

[
GgSt,t−1X

E(SτSτ−1|Gg)
qG(X;π)2

q̇G(X; ρ)
[
(Yit − Yit−1)− EM

[
w̃C
it,t−1(g,X)(Yit − Yit−1)

]]]
EM [GgSt,t−1]

,

are a k dimensional vectors, k being the number of covariates in X. Finally, let ∆̂ATT g≤t

and ∆ATTg≤t denote the vectors of all ∆̂ATT (g, t) and ∆ATT (g, t) for any 2 ≤ g ≤ t ≤ T .

Similarly, the collection of ψgt across all periods and groups such that g ≤ t is denoted by

Ψg≤t.

Second, we show the asymptotic result for ∆ATT . Recall that

ÂTT (g, t) =
t∑

τ=g

∆̂ATT (g, τ),

where now

∆̂ATT (g, τ) = ÊM

[
lt(qg)

GgSτ−1Sτ

ÊM [GgSτ−1Sτ ]
(Yτ − Yτ−1)

]
− ÊM

lt(qC) pg(X)CSτ−1Sτ

1−pg(X)

ÊM

[
pg(X)CSτ−1Sτ

1−pg(X)

](Yτ − Yτ−1)


= ∆̂ATT g(g, τ)− ∆̂ATTC(g, τ),

Let us treat each term separately. For ∆̂ATTC(g, τ), take an arbitrary function g, let

wt(g) =
g(X)CSt,t−1

1− g(X)
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and note that

√
n(∆̂ATTC(g, t)−∆ATTC(g, t)) =

√
n

(
ÊM

[
lt(q̂C)wt(p̂g)

ÊM [wt(p̂g)]
(Yt − Yt−1)

]
− EM

[
lt(qC)wt(pg)

EM [wt(pg)]
(Yt − Yt−1)

])

=

√
n

ÊM [wt(p̂g)]

(
ÊM [lt(q̂C)wt(p̂g)(Yt − Yt−1)]−

ÊM [wt(p̂g)]

EM [wt(pg)]
EM [lt(qC)wt(pg)(Yt − Yt−1)]

)

=

√
n

ÊM [wt(p̂g)]

(
ÊM [lt(q̂C)wt(p̂g)(Yt − Yt−1)]− EM [lt(qC)wt(pg)(Yt − Yt−1)]

)
− EM [wt(pg)(Yt − Yt−1)]

ÊM [wt(p̂g)]EM [wt(pg)]

√
n(ÊM [lt(qC)wt(p̂g)]− ÊM [lt(qC)wt(pg)])

=
1

ÊM [wt(p̂g)]

√
nAn(p̂g, q̂C)−

∆ATTC(g, t)

ÊM [wt(p̂g)]

√
nBn(p̂g, q̂C)

=
1

EM [wt(pg)]

√
nAn(p̂g, q̂C)−

∆ATTC(g, t)

EM [wt(pg)]

√
nBn(p̂g, q̂C) + op(1),

Applying the mean value theorem and the Classical Glivenko-Cantelli’s theorem yield

An(p̂g, q̂C) =ÊM [lt(qC)wt(pg)(Yt − Yt−1)]− EM [lt(qC)wt(pg)(Yt − Yt−1)]

+ ÊM

[
lt(qC)X

CSt,t−1

(1− pg(X;π))2
ṗg(X;π)(Yt − Yt−1)

]′ (
π̂g − π0g

)
− ÊM

[
wt(pg)X

E(SτSτ−1|C)
qC(X;π)2

q̇C(X; ρ)(Yt − Yt−1)

]′ (
ρ̂C − ρ0C

)
+ op(n

−1/2),

Bn(p̂g) =ÊM [lt(qC)wt(pg)]− EM [lt(qC)wt(pg)]

+ ÊM

[
lt(qC)X

CSt,t−1

(1− pg(X;π))2
ṗg(X;π)

]′ (
π̂g − π0g

)
− ÊM

[
wt(pg)X

E(SτSτ−1|C)
qC(X;π)2

q̇C(X; ρ)

]′ (
ρ̂C − ρ0C

)
+ op(n

−1/2),

where π and ρ are intermediate points. Applying the same reasoning for ∆ATTg(g, t) gives

√
n(∆̂ATT g(g, t)−∆ATTg(g, t)) =

1

EM [wt]

√
nAn(q̂C)−

∆ATTg(g, t)

EM [wt]

√
nBn(p̂g, q̂C) + op(1),

with

wt = GgSt,t−1,
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and

An(q̂C) =ÊM [lt(qg)wt(Yt − Yt−1)]− EM [lt(qg)wt(Yt − Yt−1)]

− ÊM

[
wtX

E(GgSτSτ−1)

qg(X;π)2E(Gg)
q̇g(X; ρ)(Yt − Yt−1)

]′ (
ρ̂g − ρ0g

)
+ op(n

−1/2),

Bn(p̂g) =ÊM [lt(qg)wt]− EM [lt(qg)wt]

− ÊM

[
wtX

E(GgSτSτ−1)

qg(X;π)2E(Gg)
q̇g(X; ρ)

]′ (
ρ̂g − ρ0g

)
+ op(n

−1/2).

Combining the above results and making use of the same Lemma yields (40) hence concludes

the proof for ∆ATT . The asymptotic covariance is given by Σ∆ = E [Ψg≤τ (Wi)Ψg≤τ (Wi)
′].

The asymptotic result for ATT follows from the same reasoning as in our main theorem.

Proof 8 (Proof of Corollary 2) This proof shows how to adapt our approach to a sam-

pling assumption related to sequential missing at random (Hoonhout and Ridder, 2019).

We focus on a simple case to illustrate the method. Let us assume that an individual can

be sampled at most two periods in a row. The first time a unit is sampled is a function of

X and Gg or C, but the probability that the unit is sampled again in the next period also

depends on the realization of its outcome. Formally, we assume Yt ⊥ St|Yt−1, X,Gg, St = 1

but Yt ⊥ St|X,Gg, St−1 = 0. Let us only focus on AX(g, τ) to show how the weights change.

We have

E (AX(g, τ)|Gg = 1) = E (Yτ − Yτ−1|Gg)

= E (E[Yτ − Yτ−1|X,Gg, Yτ−1]|Gg)

= E (E[Yτ − Yτ−1|X,Gg, Yτ−1, Sτ = 1, Sτ−1 = 1]|Gg)

= E

(
E[

Sτ
E[Sτ |X,Yτ−1, Sτ−1 = 1, Gg]

(Yτ − Yτ−1)|X,Gg, Yτ−1, Sτ−1]|Gg

)
= E

(
E[

SτSτ−1

E[Sτ |X,Yτ−1, Sτ−1 = 1, Gg]E[Sτ−1|X,Gg]
(Yτ − Yτ−1)|X,Gg]|Gg

)
= EM

(
(Yτ − Yτ−1)

GgSτSτ−1

E[Sτ |X,Yτ−1, Sτ−1 = 1, Gg]E[Sτ−1|X,Gg]E[Gg]

)
= EM

( E[GgSτSτ−1]

E[Sτ |X,Yτ−1, Sτ−1 = 1, Gg]E[Sτ−1|X,Gg]E[Gg]
(Yτ − Yτ−1)

GgSτSτ−1

E[GgSτSτ−1]

)
,

(59)

where the third equality follows from Yt ⊥ St|Yt−1, X,Gg. Remark that if the conditional

probability E[Sτ |X,Yτ−1, Sτ−1, Gg] does not depend on Yτ−1, Sτ−1, then we are back to the
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previous case.

Therefore, our approach accommodates general attrition models with only minor modifica-

tions to the chained DiD estimator. We do not derive the asymptotic distribution for this

case, but it follows from the same steps as in Corollary 1.
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B Appendix for the Application

In this appendix, we present the detailed results in various tables. The next two tables

give detailed results corresponding to Figures 1, 2, 3, and 4.

Table B.1: Effects on total workforce (exhaustively observed outcome)

log(total workforce)

Long DiD Chained DiD Cross Section DiD

Exhaustive Exhaustive Unbalanced Exhaustive Unbalanced
(1) (2) (3) (4) (5)

β−3 -0.013 -0.013 0.032 -0.013 0.075
[-0.084,0.058] [-0.079,0.053] [-0.059,0.123] [-0.144,0.117] [-0.609,0.76]

β−2 -0.023 -0.023 -0.008 -0.023 0.012
[-0.091,0.044] [-0.087,0.041] [-0.097,0.081] [-0.13,0.083] [-0.549,0.574]

β−1 -0.005 -0.005 -0.005 -0.005 0.024
[-0.054,0.044] [-0.052,0.041] [-0.066,0.056] [-0.09,0.08] [-0.442,0.491]

ref. 0 0 0 0 0
β1 0.027 0.027 0.046 0.028 0.062

[-0.026,0.08] [-0.023,0.078] [-0.021,0.112] [-0.103,0.159] [-0.372,0.495]
β2 0.057** 0.056** 0.081** 0.057 0.092

[-0.006,0.121] [-0.005,0.118] [0.002,0.159] [-0.048,0.163] [-0.426,0.61]
β3 0.07** 0.068** 0.089** 0.069 0.051

[0,0.14] [0,0.135] [0.006,0.172] [-0.075,0.214] [-0.506,0.607]
β4 0.084** 0.077** 0.119*** 0.083 0.087

[0.002,0.167] [0,0.154] [0.024,0.214] [-0.091,0.257] [-0.53,0.704]
β5 0.123*** 0.111*** 0.149*** 0.119* 0.076

[0.032,0.213] [0.025,0.197] [0.037,0.261] [-0.032,0.269] [-0.533,0.686]
Pre- -0.014 -0.014 0.006 -0.014 0.037
trend [-0.048,0.021] [-0.049,0.021] [-0.04,0.053] [-0.079,0.051] [-0.294,0.368]

Notes: This table shows the dynamic treatment effects relative to the beginning of the treat-
ment obtained on a panel balanced on exhaustive variables. “Exhaustive” refers to the use
of an exhaustively observed outcome without pretending that this variable is imperfectly ob-
served. “Unbalanced” refers to the use of an exhaustively observed outcome pretending that
this variable is observed from R&D survey, that is, from an unbalanced repeated panel. 95%
confidence intervals are obtained from the multiplier bootstrap. ∗p < 0.10, ∗∗p < 0.05, ∗ ∗ ∗p < 0.01
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Table B.2: Effects on highly qualified workers (exhaustively observed outcome)

log(highly qualified workforce)

Long DiD Chained DiD Cross Section DiD

Exhaustive Exhaustive Unbalanced Exhaustive Unbalanced
(1) (2) (3) (4) (5)

β−3 0.033 0.033 0.088 0.033 0.194
[-0.059,0.126] [-0.053,0.12] [-0.059,0.235] [-0.081,0.148] [-0.307,0.696]

β−2 0.018 0.018 0.013 0.018 0.006
[-0.066,0.103] [-0.06,0.096] [-0.131,0.157] [-0.08,0.116] [-0.411,0.423]

β−1 0.018 0.018 0.015 0.018 0.019
[-0.058,0.094] [-0.054,0.09] [-0.099,0.129] [-0.065,0.101] [-0.328,0.365]

ref. 0 0 0 0 0
β1 0.022 0.022 0.02 0.024 0.034

[-0.056,0.1] [-0.048,0.091] [-0.09,0.129] [-0.083,0.13] [-0.287,0.355]
β2 0.044 0.043 0.067 0.045 0.065

[-0.038,0.126] [-0.032,0.118] [-0.051,0.184] [-0.05,0.141] [-0.319,0.449]
β3 0.075* 0.072** 0.061 0.072 0.02

[-0.015,0.164] [-0.008,0.152] [-0.066,0.189] [-0.05,0.194] [-0.388,0.428]
β4 0.109** 0.104** 0.108 0.105 0.008

[0.007,0.211] [0.011,0.196] [-0.04,0.256] [-0.04,0.25] [-0.439,0.456]
β5 0.125** 0.117*** 0.128* 0.121* 0.069

[0.014,0.236] [0.016,0.217] [-0.032,0.288] [-0.014,0.257] [-0.39,0.528]
Pre- 0.023 0.023 0.039 0.023 0.073
trend [-0.022,0.068] [-0.018,0.064] [-0.035,0.113] [-0.033,0.08] [-0.173,0.319]

Notes: This table shows the dynamic treatment effects relative to the beginning of the treat-
ment obtained on a panel balanced on exhaustive variables. “Exhaustive” refers to the use
of an exhaustively observed outcome without pretending that this variable is imperfectly ob-
served. “Unbalanced” refers to the use of an exhaustively observed outcome pretending that
this variable is observed from R&D survey, that is, from an unbalanced repeated panel. 95%
confidence intervals are obtained from the multiplier bootstrap. ∗p < 0.10, ∗∗p < 0.05, ∗ ∗ ∗p < 0.01
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Table B.3: Effects on employment variables observed from R&D survey

Unbalanced variables from R&D survey in log

Chained DiD Cross Section DiD

total workforce researchers total workforce researchers
(1) (2) (3) (4)

β−3 0.053 -0.041 0.104 0.106
[-0.066,0.172] [-0.194,0.112] [-0.598,0.806] [-0.249,0.462]

β−2 0.012 0.017 0.064 0.056
[-0.111,0.135] [-0.103,0.137] [-0.554,0.682] [-0.246,0.357]

β−1 0.009 0.007 0.02 0.033
[-0.074,0.092] [-0.104,0.119] [-0.481,0.522] [-0.219,0.285]

ref. 0 0 0 0
β1 0.053 0.06 0.075 0.082

[-0.032,0.139] [-0.051,0.17] [-0.409,0.56] [-0.171,0.336]
β2 0.038 0.124** 0.052 0.132

[-0.073,0.149] [0.001,0.248] [-0.499,0.603] [-0.164,0.427]
β3 0.047 0.181*** 0.057 0.139

[-0.068,0.162] [0.041,0.32] [-0.525,0.638] [-0.178,0.455]
β4 0.129** 0.245*** 0.081 0.148

[0.007,0.25] [0.093,0.397] [-0.57,0.733] [-0.189,0.485]
β5 0.168*** 0.288*** 0.116 0.221

[0.034,0.302] [0.128,0.448] [-0.546,0.778] [-0.144,0.585]
Pre- 0.025 -0.006 0.063 0.065
trend [-0.032,0.082] [-0.075,0.064] [-0.319,0.444] [-0.116,0.246]

Notes: This table shows the dynamic treatment effects relative to the beginning of the treat-
ment. The dynamic effects are estimated with outcome variables observed from R&D survey,
that is, from an unbalanced repeated panel. 95% confidence intervals are obtained from the
multiplier bootstrap. ∗p < 0.10, ∗∗p < 0.05, ∗ ∗ ∗p < 0.01

These estimates can be compared to the next results where administrative data are not

reweighted using the exhaustively observed variables. Results are presented in Tables B.4,

B.5, and B.6. This introduces some differences because there are more individuals in some

periods compared to the results presented earlier.
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Table B.4: Effects on total workforce (exhaustively observed outcome with the com-
plete panel data)

log(total workforce)

Long DiD Chained DiD Cross Section DiD

Exhaustive Exhaustive Unbalanced Exhaustive Unbalanced
(1) (2) (3) (4) (5)

β−3 -0.001 0.001 0.019 0 0.002
[-0.056,0.054] [-0.07,0.071] [-0.067,0.105] [-0.174,0.174] [-0.46,0.464]

β−2 -0.027 -0.027 -0.018 -0.022 0.001
[-0.079,0.026] [-0.092,0.038] [-0.099,0.063] [-0.173,0.128] [-0.405,0.408]

β−1 -0.017 -0.017 -0.013 -0.016 -0.022
[-0.061,0.026] [-0.068,0.033] [-0.076,0.051] [-0.14,0.107] [-0.374,0.33]

ref. 0 0 0 0 0
β1 0.045** 0.045** 0.051* 0.049 0.052

[0.002,0.087] [-0.006,0.095] [-0.008,0.11] [-0.073,0.17] [-0.282,0.386]
β2 0.066*** 0.077*** 0.088*** 0.057 0.046

[0.013,0.118] [0.013,0.142] [0.015,0.161] [-0.086,0.199] [-0.348,0.44]
β3 0.069*** 0.085*** 0.089** 0.055 -0.001

[0.009,0.128] [0.01,0.159] [0.004,0.174] [-0.085,0.194] [-0.408,0.406]
β4 0.074*** 0.085** 0.11*** 0.05 -0.027

[0.009,0.139] [0,0.17] [0.016,0.204] [-0.117,0.216] [-0.473,0.42]
β5 0.094*** 0.097** 0.134*** 0.052 -0.07

[0.019,0.169] [0.003,0.19] [0.028,0.24] [-0.121,0.226] [-0.545,0.406]
Pre- -0.015 -0.015 -0.004 -0.013 -0.006
trend [-0.043,0.013] [-0.05,0.021] [-0.047,0.039] [-0.087,0.061] [-0.238,0.225]

Notes: This table shows the dynamic treatment effects relative to the beginning of the treat-
ment obtained on a panel balanced on exhaustive variables. “Exhaustive” refers to the use
of an exhaustively observed outcome without pretending that this variable is imperfectly ob-
served. “Unbalanced” refers to the use of an exhaustively observed outcome pretending that
this variable is observed from R&D survey, that is, from an unbalanced repeated panel. 95%
confidence intervals are obtained from the multiplier bootstrap. ∗p < 0.10, ∗∗p < 0.05, ∗ ∗ ∗p < 0.01
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Table B.5: Effects on highly qualified workers (exhaustively observed outcome with
the complete panel data)

log(highly qualified workforce)

Long DiD Chained DiD Cross Section DiD

Exhaustive Exhaustive Unbalanced Exhaustive Unbalanced
(1) (2) (3) (4) (5)

β−3 0.019 0.025 0.07 0.04 0.102
[-0.046,0.085] [-0.053,0.102] [-0.059,0.199] [-0.091,0.171] [-0.235,0.438]

β−2 0.024 0.013 0.021 0.023 -0.026
[-0.041,0.089] [-0.062,0.087] [-0.105,0.148] [-0.09,0.137] [-0.327,0.274]

β−1 0.016 0.016 0.012 0.023 -0.017
[-0.043,0.075] [-0.053,0.085] [-0.093,0.116] [-0.076,0.122] [-0.281,0.247]

ref. 0 0 0 0 0
β1 0.028 0.028 0.02 0.031 0.019

[-0.031,0.088] [-0.04,0.095] [-0.085,0.125] [-0.069,0.132] [-0.228,0.267]
β2 0.045 0.047 0.077 0.044 0.044

[-0.021,0.111] [-0.028,0.123] [-0.049,0.202] [-0.068,0.155] [-0.239,0.328]
β3 0.078** 0.077** 0.064 0.072 -0.007

[0.008,0.147] [-0.006,0.16] [-0.068,0.197] [-0.041,0.185] [-0.3,0.286]
β4 0.116*** 0.108*** 0.101 0.103* -0.052

[0.042,0.19] [0.017,0.199] [-0.038,0.24] [-0.03,0.235] [-0.385,0.281]
β5 0.134*** 0.119*** 0.13** 0.111* -0.031

[0.048,0.22] [0.021,0.218] [-0.023,0.283] [-0.029,0.251] [-0.382,0.32]
Pre- 0.02 0.018 0.034 0.029 0.019
trend [-0.015,0.054] [-0.022,0.058] [-0.031,0.1] [-0.032,0.089] [-0.151,0.19]

Notes: This table shows the dynamic treatment effects relative to the beginning of the treat-
ment obtained on a panel balanced on exhaustive variables. “Exhaustive” refers to the use
of an exhaustively observed outcome without pretending that this variable is imperfectly ob-
served. “Unbalanced” refers to the use of an exhaustively observed outcome pretending that
this variable is observed from R&D survey, that is, from an unbalanced repeated panel. 95%
confidence intervals are obtained from the multiplier bootstrap. ∗p < 0.10, ∗∗p < 0.05, ∗ ∗ ∗p < 0.01

34



Table B.6: Effects on employment variables observed from R&D survey with the
complete panel data

Unbalanced variables from R&D survey in log

Chained DiD Cross Section DiD

total workforce researchers total workforce researchers
(1) (2) (3) (4)

β−3 0.036 -0.03 0.017 0.081
[-0.113,0.185] [-0.149,0.089] [-0.471,0.504] [-0.148,0.31]

β−2 0.028 -0.018 0.079 0.044
[-0.114,0.171] [-0.125,0.088] [-0.368,0.526] [-0.164,0.252]

β−1 0.022 0.007 -0.016 0.037
[-0.1,0.144] [-0.082,0.097] [-0.4,0.369] [-0.149,0.223]

ref. 0 0 0 0
β1 0.05 0.073 0.045 0.095

[-0.066,0.165] [-0.023,0.168] [-0.32,0.409] [-0.095,0.285]
β2 0.047 0.152*** 0.022 0.141

[-0.084,0.177] [0.048,0.257] [-0.378,0.423] [-0.059,0.341]
β3 0.064 0.214*** 0.014 0.134

[-0.073,0.201] [0.099,0.329] [-0.402,0.43] [-0.074,0.341]
β4 0.12* 0.244*** -0.035 0.086

[-0.029,0.269] [0.121,0.368] [-0.501,0.43] [-0.137,0.309]
β5 0.142** 0.297*** -0.046 0.138

[-0.013,0.297] [0.163,0.432] [-0.508,0.415] [-0.099,0.374]
Pre- 0.029 -0.014 0.027 0.054
trend [-0.042,0.099] [-0.073,0.046] [-0.203,0.257] [-0.065,0.173]

Notes: This table shows the dynamic treatment effects relative to the beginning of the treat-
ment. The dynamic effects are estimated with outcome variables observed from R&D survey,
that is, from an unbalanced repeated panel. 95% confidence intervals are obtained from the
multiplier bootstrap. ∗p < 0.10, ∗∗p < 0.05, ∗ ∗ ∗p < 0.01
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